Answer:
Model D
Explanation:
Bohr's Model has a planetary look. Where the electrons are in an orbit.
Atoms have no electric charge because the protons and electrons "cancel out" each others charges. Neutrons have no charge. What is the atomic number of an element? The atomic number is the number of protons in the atom's nucleus.
Hope this helps have a great day :)
Answer:
- <u>Cadmium has larger atomic radius than sulfur.</u>
Explanation:
Down a period, atomic radii decrease from left to right due to the increase in the number of protons and electrons across a period: when a proton is added the pull of the electrons towards the nucleus is larger, so the size of the atom decreases.
Hence, you can compare the elements that belong to a same period and predict that the atom with lower atomic number (number of protons) will haver larger atomic radius. With that:
- Oxygen and fluorine are in the period 3, being oxygen to the left of fluorine, so oxygen is larger than fluorine.
- Sulfur and chlorine are in the period 4, being sulfur to the left of chlorine, so sulfur is larger than chlorine.
Now see whan happens down a group. Atomic radius increases from top to bottom within a group due to electron shielding. That permits you to compare the size of the elements in a group:
- Fluorine and chlorine are in the same group (17), with chlorine directly below fluorine, so the atomic radius of chlorine is larger than the atomic radius of fluorine.
- Sulfur and oxygen are in the same group (16), with sulfur directlly below oxygen, so sulfur the atomic radius of sulfur is larger than the atocmi radius of oxygen.
So far, you can rank the atomic radius of sulfur, chlorine, fluorine, and oxygen, in increasing order as:
- O < F < Cl < S, concluding that O, F, and Cl have smaller atomic radius than S.
Cadmiun, Cd, is to the left and below sulfur, so both electron shielding (down a group) and increase of the number of protons (down a period) lead to predict the cadmium has a larger atomic radius than sulfur.
Lithium is an element that has an electronic configuration of 2,1. So when forming bonds, it tries to release one of its electrons in the last shell to reach the octet state. Normally when atoms release electrons they get positive charge since the number of protons which bear positive charge, is higher than number of electrons which bear negative charge. So when reaching its octet state, lithium gains positive charge!
Hope this helps! Tbh am not good at explaining. If u have any doubts, ask me!
Answer:
The reaction is B. Synthesis
Explanation:
In the case of this reaction, it corresponds to a synthesis where 2 compounds (calcium oxide and water) are combined to form a new one (calcium hydroxide).