Answer:
14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.
Explanation:
The heat Q that is necessary to provide for a mass m of a certain substance to change phase is equal to Q = m*L, where L is called the latent heat of the substance and depends on the type of phase change.
During the evaporation process, a substance goes from a liquid to a gaseous state and needs to absorb a certain amount of heat from its immediate surroundings, which results in its cooling. The heat absorbed is called the heat of vaporization.
So, it is called "heat of vaporization", the energy required to change 1 gram of substance from a liquid state to a gaseous state at the boiling point.
In this case, being:
- L= 84
and replacing in the expression Q = m*L you get:
Q=172 g*84
Q=14,448 J
<u><em>14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.</em></u>
Answer:
not sure
Explanation:
a physical change (can)change.,....
Heat energy is needed for evaporation to happen.
Answer:
- <u>You need to convert the number of atoms of Ca into mass in grams, using Avogadro's number and the atomic mass of Ca.</u>
Explanation:
The amount of matter is measured in grams. Thus, you need to convert the number of atoms of Ca (calcium) into mass to compare with 2.45 grams of Mg.
To convert the atoms of calcium into mass, you divide by Avogadro's number, to obtain the number of moles of atoms, and then divide by the atomic mass of calcium.
<u />
<u>1. Number of moles, n</u>
<u />
<u>2. Mass</u>
- mass = number of moles × atomic mass
- mass = 0.053969mol × 40.078g/mol = 2.16g
Then, 2.45 g of Mg represent a greaer mass than the 3.25 × 10²² atoms of Ca.
The formula for speed is speed = distance ÷ time. To work out what the units are for speed, you need to know the units for distance and time. In this example, distance is in metres (m) and time is in seconds (s), so the units will be in metres per second (m/s).