1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maks197457 [2]
3 years ago
13

A person can jump 1.5m on the earth. How high could the person jump on a planet having the twice the mass of the earth and twice

the radius of the earth?
Physics
2 answers:
guapka [62]3 years ago
8 0
I believe you'd have to calculate the different planets info and use the formula you the problem used to find their height of the jump in order to find yours ..
MrMuchimi3 years ago
5 0
F=mg=Gm1m2/r^2
g=Gm2/r^2
g=2Gm2/(2r)^2=2Gm2/4r^2=Gm2/2r^2
So since there is half times the gravity on this unknown planet that has twice earth's mass and twice it's radius, then the person can jump twice as high. 1.5*2= 3m high

You might be interested in
Q 24, 25, 26 i dont get them and need answers for it
Alexandra [31]

Answer:

24) W = 75 [J]; 25) W = 1794[J]; 26) n = 8.8 (times) or 9 (times)

Explanation:

24) This problem can be solved by means of the following equation.

DU = Q-W\\

where:

DU = internal energy difference [J]

Q = Heat transfer [J]

W = work [J]  

Since there are no temperature changes the internal energy change is equal to zero

DU = 0

therefore:

Q = W\\

The work is equal to the heat transfered, W = 75 [J].

25) The heat transfer can be calculated by means of the following equation.

Q = m*c_{p}*DT\\where:\\m = mass = 0.4[kg]\\c_{p} = specific heat = 897[J/kg*K]\\DT= 5 [C]

Q = 0.4*897*5 = 1794[J]

Work is equal to heat transfer, W = 1794[J]

26) Each time the bag falls the potential energy is transformed into heat energy, which is released into the environment. In this way the potential energy is equal to the developed heat.

E_{p}=Q\\\\E_{p}=m*g*h

where:

m = mass = 0.5[kg]

g = gravity = 9.81[m/s^2]

h = 1.5 [m]

E_{p}=0.5*9.81*1.5\\E_{p}=7.36[J]

The heat developed can be calculated by means of the following equation.

Q=m*c_{p}*DT\\Q=0.5*130*1\\Q=65[J]

The number of times will be calculated as follows

n = 65/7.36

n = 8.8 (times) or 9 (times)

7 0
3 years ago
Write the answer:<br>physics ... i need help ​
Mariana [72]

Answer:

6 gallons

Explanation:

At 30 mph, the fuel mileage is 25 mpg.

After 5 hours, the distance traveled is:

30 mi/hr × 5 hr = 150 mi

The amount of gas used is:

150 mi × (1 gal / 25 mi) = 6 gal

7 0
3 years ago
A large balloon of mass 210 kg is filled with helium gas until its volume is 329 m3. Assume the density of air is 1.29 kg/m3 and
Nastasia [14]

(a) See figure in attachment (please note that the image should be rotated by 90 degrees clockwise)

There are only two forces acting on the balloon, if we neglect air resistance:

- The weight of the balloon, labelled with W, whose magnitude is

W=mg

where m is the mass of the balloon+the helium gas inside and g is the acceleration due to gravity, and whose direction is downward

- The Buoyant force, labelled with B, whose magnitude is

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity, and where the direction is upward

(b) 4159 N

The buoyant force is given by

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity.

In this case we have

\rho_a = 1.29 kg/m^3 is the air density

V=329 m^3 is the volume of the balloon

g = 9.8 m/s^2 is the acceleration due to gravity

So the buoyant force is

B=(1.29 kg/m^3)(329 m^3)(9.8 m/s^2)=4159 N

(c) 1524 N

The mass of the helium gas inside the balloon is

m_h=\rho_h V=(0.179 kg/m^3)(329 m^3)=59 kg

where \rho_h is the helium density; so we the total mass of the balloon+helium gas inside is

m=m_h+m_b=59 kg+210 kg=269 kg

So now we can find the weight of the balloon:

W=mg=(269 kg)(9.8 m/s^2)=2635 N

And so, the net force on the balloon is

F=B-W=4159 N-2635 N=1524 N

(d) The balloon will rise

Explanation: we said that there are only two forces acting on the balloon: the buoyant force, upward, and the weight, downward. Since the magnitude of the buoyant force is larger than the magnitude of the weigth, this means that the net force on the balloon points upward, so according to Newton's second law, the balloon will have an acceleration pointing upward, so it will rise.

(e) 155 kg

The maximum additional mass that the balloon can support in equilibrium can be found by requiring that the buoyant force is equal to the new weight of the balloon:

W'=(m'+m)g=B

where m' is the additional mass. Re-arranging the equation for m', we find

m'=\frac{B}{g}-m=\frac{4159 N}{9.8 m/s^2}-269 kg=155 kg

(f) The balloon and its load will accelerate upward.

If the mass of the load is less than the value calculated in the previous part (155 kg), the balloon will accelerate upward, because the buoyant force will still be larger than the weight of the balloon, so the net force will still be pointing upward.

(g) The decrease in air density as the altitude increases

As the balloon rises and goes higher, the density of the air in the atmosphere decreases. As a result, the buoyant force that pushes the balloon upward will decrease, according to the formula

B=\rho_a V g

So, at a certain altitude h, the buoyant force will be no longer greater than the weight of the balloon, therefore the net force will become zero and the balloon will no longer rise.

4 0
3 years ago
A 4.9-MeV (kinetic energy) proton enters a 0.28-T field, in a plane perpendicular to the field. Part APart complete What is the
BartSMP [9]

Answer:

r=1.14m

Explanation:

\theta is the angle between the velocity and the magnetic field. So, the magnetic force on the proton is:

F_m=qvBsen\theta\\F_m=qvBsen(90^\circ)\\F_m=qvB

A charged particle describes a semicircle in a uniform magnetic field. Therefore, applying Newton's second law to uniform circular motion:

F_m=F_c\\qvB=F_c(1)

F_c is the centripetal force and is defined as:

F_c=m\frac{v^2}{r}

Here v is the proton's speed and r is the radius of the circular motion. Replacing this in (1) and solving for r:

qvB=\frac{mv^2}{r}\\r=\frac{mv^2}{qvB}\\r=\frac{mv}{qB}

Recall that 1 J is equal to 6.242*10^{12}MeV, so:

4.9MeV*\frac{1J}{6.242*10^{12}MeV}=7.85*10^{-13}J

We can calculate v from the kinetic energy of the proton:

K=\frac{mv^2}{2}\\\\v=\sqrt{\frac{2K}{m}}\\v=\sqrt{\frac{2(7.85*10^{-13}J)}{1.67*10^{-27}kg}}\\v=3.06*10^{7}\frac{m}{s}

Finally, we calculate the radius of the proton path:

r=\frac{mv}{qB}\\r=\frac{1.67*10^{-27}kg(3.06*10^{7}\frac{m}{s})}{1.6*10^{-19}C(0.28T)}\\r=1.14m

8 0
3 years ago
A commonly used unit of electrical energy.
ladessa [460]
The two most common units of electric energy is Watts or hertz.
8 0
3 years ago
Other questions:
  • On a hot day, you sit on the edge of a pool and dip your feet into the water, causing changes to occur that are related to the p
    11·1 answer
  • A diver can reduce her moment of inertia by a factor of about 3.5 when changing from the straight position to the tuck position.
    12·1 answer
  • A powerboat, starting from rest maintains a constant acceleration. After a certain time Δt, its displacement and velocity are Δr
    12·1 answer
  • A gate in an irrigation canal is constructed in the form of a trapezoid 2 m wide at the bottom, 38 m wide at the top, and 2 m hi
    14·1 answer
  • A person runs with a constant velocity of 1.2 m/s for 30 seconds. how far do they travel?
    9·1 answer
  • An elevator accelerates upward at 2.0 m/s?,
    10·1 answer
  • A 45.5-turn circular coil of radius 4.85 cm can be oriented in any direction in a uniform magnetic field having a magnitude of 0
    5·2 answers
  • Importance of a measurement at least 4 point​
    11·1 answer
  • Define a machine in the physics subject ​
    8·1 answer
  • A wind turbine takes in energy from wind with the goal of converting it into electrical energy. Much of the wind energy is also
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!