<span>EP (potential energy) = mgy -> (59)(9.8)(-5) = -2,891
EP + EK (kinetic energy) = 0; but rearranging it for EK makes it EK = -EP, such that EK = 2891 when plugged in.
EK = 0.5mv^2, but can also be v = sqrt(2EK/m).
Plugging that in for sqrt((2 * 2891)/59), we get 9.9 m/s^2 with respect to significant figures.</span>
Answer:
45.89m/s²
Explanation:
Given
Distance S = 305m
Time t = 3.64s
To get the acceleration during this run, we will apply the equation of motion:
S = ut+1/2at²
Substitute the given parameters into the formula and calculate the value of a
305 = 0+1/2 a(3.64)²
304 = 1/2(13.2496)a
304 = 6.6248a
a = 304/6.6248
a = 45.89m/s²
Hence the average acceleration during this run is 45.89m/s²
Answer:
λ = 3 10⁻⁷ m, UV laser
Explanation:
The diffraction phenomenon is described by the expression
a sin θ = m λ
let's use trigonometry
tan θ = y / L
as in this phenomenon the angles are small
tan θ =
= sin θ
sin θ = y / L
we substitute
a y / L = m λ
let's apply this equation to the initial data
a 0.04 / L = 1 600 10⁻⁹
a / L = 1.5 10⁻⁵
now they tell us that we change the laser and we have y = 0.04 m for m = 2
a 0.04 / L = 2 λ
a / L = 50 λ
we solve the two expression is
1.5 10⁻⁵ = 50 λ
λ = 1.5 10⁻⁵ / 50
λ = 3 10⁻⁷ m
UV laser
Q3. (a) 0m/s, as they are asking for initial velocit.
(b)(i) The paper has a large surface area or weighs less than the coin,thus,falls smoothly.
(ii)The coin has more mass than the paper.
(c) They fall at the same acceleration and hit the bottom at the same time.
Their mass doesn't matter in the vacuum.