The density increases.
When gases are compressed, their volume decreases, and the resulting pressure increases. The temperature will change if either P or V are held constant. Since the volume decreases, then density, or m/V, increases.
P×V ~ T
The answer to the given question above would be option B. If a topographic map included a 6,000 ft. mountain next to an area of low hills, the statement that best describe the contour lines on the map is this: <span>The contour lines around the mountain would be very close together. Hope this helps.</span>
The equilibrium conditions allow to find the results for the balance forces are:
When the acceleration is zero we have the equilibrium conditions for both linear and rotational motion.
∑ F = 0
∑ τ = 0
Where F are the forces and τ the torques.
The torque is the product of the force and the perpendicular distance to the point of support,
The free-body diagrams are diagrams of the forces without the details of the bodies, see attached for the free-body diagram of the system.
We write the translational equilibrium condition.
F₁ - W₁ - W₂ + F₂ = 0
We write the equation for the rotational motion, set our point of origin at scale 1, and the counterclockwise turns are positive.
F₂ 2 - W₁ 1 - W₂ 1.5 = 0
Let's calculate F₂
F₂ =
F₂ = (m g + M g 1.5)/ 2
F₂ =
F₂ = 558.6 N
We substitute in the translational equilibrium equation.
F₁ = W₁ + W₂ - F₂
F₁ = (m + M) g - F₂
F₁ = (12 +68) 9.8 - 558.6
F₁ = 225.4 N
In conclusion using the equilibrium conditions we can find the forces of the balance are:
Learn more here: brainly.com/question/12830892
Answer:
y = 4 Sin (2πt)
Explanation:
Amplitude, A = 4
frequency, f = 1
Wave function is given by
y = A sinωt
where, ω is angular frequency
ω = 2 π f = 2 π x 1 = 2π
So, the desired wave function
y = 4 Sin (2πt)
Energy is calculated as power*time, so give the wattage of 1200 W (equivalent to 1200 Joules/second) and time of 30 seconds, multiplying these gives 36000 J or 36 kJ of electrical energy.
If electrical charge or current is needed: Power = voltage * current, so given the power of 1200 watts and voltage of 120 V, current is 1200 W / 120 V = 10 Amperes. Charge is calculated by multiplying 10 A*30 s = 300 C.