How many protons does Thorium have? 90
How many neutrons does Thorium-234 have? 144
Calculate the mass defect for the isotope thorium-234 1.85864 amu
We are given the molar mass of Molybdenum as 95.94 g/mol. Also, the chemical symbol for Molybdenum is Mo. This question is asking for the amount of molecules of molybdenum in a 150.0 g sample. However, since molybdenum is a metal and it is in the form of solid molybdenum, Mo (s), it is not actual a molecule. A molecule has one or more atom bonded together. We will instead be finding the amount of atoms of Molybdenum present in the sample. To do this we use Avogadro's number, which is the amount of atoms/molecules of a substance in 1 mole of that substance.
150.0 g Mo/ 95.94 g/mol = 1.563 moles of Mo
1.563 moles Mo x 6.022 x 10²³ atoms/mole = 9.415 x 10²³ atoms Mo
Therefore, there are 9.415 x 10²³ atoms of Molybdenum in 150.0 g.
1L = 33.814 oz
xL = 2.75 oz
so it's a proportion
1L / 33.814 oz = xL / 2.75
solve for x
(1/33.814) * 2.75 = 0.0813272609 on your calculator, but it's not the answer.
the number in your problem, 2.75 oz, has 3 significant figures. so you can only round this number to 3 significant figures too.
your equipment isn't accurate enough to give a reading to 10 significant figures if that makes sense. you have to give the answer in terms of the term you use with the lowest significant figures.
so with 3 significant figures,
0.0813272609 rounds to
0.0813 L
Element on the right side of the periodic table differ from the elements on the left side in that elements on the <em>right side are non metallic and tends to be gases at room temperature.</em>
<em> </em><u>Explanation</u>
In the periodic table there element in the right side , left side and those which are in between.
- Example of element in the right side is fluorine chlorine, neon, Argon among others.
- This element have higher effective nuclear charges and stabilize electrons more effectively.
- there electrostatic intermolecular forces are generally weak therefore they exist in liquid or gaseous state.
Answer:
38.3958 °C
Explanation:
As,
1 gram of carbohydrates on burning gives 4 kilocalories of energy
1 gram of protein on burning gives 4 kilocalories of energy
1 gram of fat on burning gives 9 kilocalories of energy
Thus,
27 g of fat on burning gives 9*27 = 243 kilocalories of energy
20 g of protein on burning gives 4*20 = 80 kilocalories of energy
48 gram of carbohydrates on burning gives 4*48 = 192 kilocalories of energy
Total energy = 515 kilocalories
Using,

Given: Volume of water = 23 L = 23×10⁻³ m³
Density of water= 1000 kg/m³
So, mass of the water:
Mass of water = 23 kg
Initial temperature = 16°C
Specific heat of water = 0.9998 kcal/kg°C

Solving for final temperature as:
<u>Final temperature = 38.3958 °C </u>