Answer:
A. Intramolecular interactions are generally stronger.
B. a. Only intermolecular interactions are broken when a liquid is converted to a gas.
Explanation:
<em>A. Which is generally stronger, intermolecular interactions or intramolecular interactions?</em>
Intramolecular interactions, in which electrons are gained, lost or shared, constitute true bonds and are one or two orders of magnitude stronger than intermolecular interactions.
<em>B. Which of these kinds of interactions are broken when a liquid is converted to a gas?</em>
When a liquid vaporizes, the intermolecular attractions are broken, that is, molecules get more separated. However, true bonds are not broken which is why the molecules keep their chemical identity.
The volume of the piece of aluminum is 1.96 mL
Explanation:
Density is the relationship of the mass of a substance and its volume.
In this case, the mass of aluminum is 5.30 g and the density is 2.70 g/mL
The formula to apply is;
D=M/V where D is density in g/mL, M is mass in g and V is volume in mL
2.70=5.30/V
V=5.30/2.70 =1.96 mL
Learn More
Density of a substance:brainly.com/question/12605423
Keywords: volume, aluminum,density
#LearnwithBrainly
Answer: The equilibrium constant for the overall reaction is 
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios.
a) 
![K_a=\frac{[PCl_3]}{[Cl_2]^{\frac{3}{2}}}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BPCl_3%5D%7D%7B%5BCl_2%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D)
b) 
![K_b=\frac{[PCl_5]}{[Cl_2]\times [PCl_3]}](https://tex.z-dn.net/?f=K_b%3D%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5Ctimes%20%5BPCl_3%5D%7D)
For overall reaction on adding a and b we get c
c) 
![K_c=\frac{[PCl_5]}{[Cl_2]^\frac{5}{2}}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5E%5Cfrac%7B5%7D%7B2%7D%7D)
![K_c=K_a\times K_b=\frac{[PCl_3]}{[Cl_2]^{\frac{3}{2}}}\times \frac{[PCl_5]}{[Cl_2]\times [PCl_3]}](https://tex.z-dn.net/?f=K_c%3DK_a%5Ctimes%20K_b%3D%5Cfrac%7B%5BPCl_3%5D%7D%7B%5BCl_2%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%5Ctimes%20%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5Ctimes%20%5BPCl_3%5D%7D)
The equilibrium constant for the overall reaction is 
The molarity of KOH is 0.1055 M
<u><em> calculation</em></u>
Step 1: write the equation for reaction between H₂C₂O₄.2H₂O and KOH
H₂C₂O₄.2H₂O + 2 KOH → K₂C₂O₄ +4 H₂O
step 2: find the moles of H₂C₂O₄.2H₂O
moles = mass÷ molar mass
from periodic table the molar mass H₂C₂O₄.2H₂O= (1 x2) +(12 x2) +(16 x4) + 2(18)=126 g/mol
= 0.2000 g ÷ 126 g/mol =0.00159 moles
step 3: use the mole ratio to calculate the moles of KOH
H₂C₂O₄.2H₂O : KOH is 1:2
therefore the moles of KOH =0.00159 x 2 = 0.00318 moles
step 4: find molarity of KOH
molarity = moles/volume in liters
volume in liters = 30.12/1000=0.03012 L
molarity is therefore = 0.00318/0.03012 =0.1055 M
I think it would be the sun because it’s the one giving energy to most things, and if you haven’t answered it yet you can put the sun because it’s giving energy to the plans and the environment and it’s the the sun was the effect of the whole thing, sorry if I didn’t help