Answer:
3.08m/s²
Explanation:
Given parameters:
Radius = 20m
Tangential velocity = 7.85m/s
Unknown:
Centripetal acceleration = ?
Solution:
Centripetal acceleration is the acceleration of a body along a circular path.
it is mathematically given as;
a =
v is the tangential velocity
r is the radius
a =
= 3.08m/s²
Answer:
option A
Explanation:
The meteor shower is the celestial activity in which meteors are observed to radiate or originate from one point.
Meteors are nothing but dust or ice from the trails of comets. Most of the meteors are less than the size of the sand particle.
We will see comet shower when we earth will cross the orbit of the comet.
Hence, the correct answer is option A
Answer:
The force per unit length is 
Explanation:
The current carrying by each wires = 2.85 A
The current in both wires flows in same direction.
The gap between the wires = 6.10 cm
Now we will use the below expression for the force per unit length. Moreover, before using the below formula we have to change the unit centimetre into meter. So, we just divide the centimetre with 100.

The height, h to which the package of mass m bounces to depends on its initial velocity, v and the acceleration due to gravity, g and is given below:

<h3>What are perfectly elastic collision?</h3>
Perfectly elastic collisions are collisions in which the momentum as well as the energy of the colliding bodies is conserved.
In perfectly elastic collisions, the sum of momentum before collision is equal to the momentum after collision.
Also, the sum of kinetic energy before collision is equal to the sum of kinetic energy after collision.
Since some of the Kinetic energy is converted to potential energy of the body;


Therefore, the height to which the package m bounces to depends on its initial velocity and the acceleration due to gravity.
Learn more about elastic collisions at: brainly.com/question/7694106
Answer:
The distance is 1.69 m.
Explanation:
Given that,
First charge 
Second charge 
Distance = 3.25 m
We need to calculate the distance
Using formula of electric field





Put the value into the formula





Hence, The distance is 1.69 m.