Explanation:
If the size and direction of the forces on the object are exactly balanced , then there is no net force acting on the object
1). The equation is: (speed) = (frequency) x (wavelength)
Speed = (256 Hz) x (1.3 m) = 332.8 meters per second
2). If the instrument is played louder, the amplitude of the waves increases.
On the oscilloscope, they would appear larger from top to bottom, but the
horizontal size of each wave doesn't change.
If the instrument is played at a higher pitch, then the waves become shorter,
because 'pitch' is directly related to the frequency of the waves, and higher
pitch means higher frequency and more waves in any period of time.
If the instrument plays louder and at higher pitch, the waves on the scope
become taller and there are more of them across the screen.
3). The equation is: Frequency = (speed) / (wavelength)
(Notice that this is exactly the same as the equation up above in question #1,
only with each side of that one divided by 'wavelength'.)
Frequency = 300,000,000 meters per second / 1,500 meters = 200,000 per second.
That's ' 200 k Hz ' .
Note:
I didn't think anybody broadcasts at 200 kHz, so I looked up BBC Radio 4
on-line, and I was surprised. They broadcast on several different frequencies,
and one of them is 198 kHz !
The magnitude of the sum of the frictional forces acting on the bike and its rider is 400N.
<h3>What is friction force?</h3>
The friction force is the opposing force which acts on the object which is in relative motion.
The driving force is equal and opposite to the friction force acting between road and bicycle.
Friction force = 400N
The friction force between rider and bike is zero.
So the magnitude of sum of friction force = 400N +0 = 400N
Thus, the magnitude of the sum of the frictional forces acting on the bike and its rider.
Learn more about friction force.
brainly.com/question/1714663
#SPJ1
Answer:
Explanation:
Far point = 17 cm . That means he can not see beyond this distance .
He wants to see at an object at 65 cm away . That means object placed at 65 has image at 17 cm by concave lens . Using lens formula
1 / v - 1 / u = 1 / f
1 / - 17 - 1 / - 65 = 1 / f
= 1 / 65 - 1 / 17
= - .0434 = 1 / f
power = - 100 / f
= - 100 x .0434
= - 4.34 D .
The answer is 100 my nilla.