Answer:
This is the answer that I got.
Explanation:
Just check over it once.
Answer:
a)The electric Field will be zero at the point between the sheets
b)
c)
Explanation:
Let
be the surface charge density of the of the non conducting parallel sheet.Let consider a Gaussian surface in the form of of cylinder such that its cross-sectional is A . Then there will be flux only due to cross sectional area as the curved sectional is perpendicular to the the electric field so the Electric Flux due to it is zero.
Now using Gauss law we have, E be the electric Field at the distance r from the sheet then

The Field will be away from the sheet and perpendicular to it.
a) The Electric Field between them

b)The Electric Field to the right of the sheets

c)The Electric Field to the left of the sheets

To solve this problem it is necessary to apply the concepts related to linear momentum, velocity and relative distance.
By definition we know that the relative velocity of an object with reference to the Light, is defined by

Where,
V = Speed from relative point
c = Speed of light
On the other hand we have that the linear momentum is defined as
P = mv
Replacing the relative velocity equation here we have to







Therefore the height with respect the observer is



Therefore the height which the observerd measure for her is 0.56m
Answer:
(a) Magnitude: 14.4 N
(b) Away from the +6 µC charge
Explanation:
As the test charge has the same sign, the force that the other charges exert on it will be a repulsive force. The magnitude of each of the forces will be:

K is the Coulomb constant equal to 9*10^9 N*m^2/C^2, q and qtest is the charge of the particles, and r is the distance between the particles.
Let's say that a force that goes toward the +6 µC charge is positive, then:


The magnitude will be:
, away from the +6 µC charge