Answer:
the concentration of
in the original solution= 0.0088 M
the concentration of
in the original solution = 0.058 M
Explanation:
Given that:
The volume of the sample containing Cd2+ and Mn2+ = 50.0 mL; &
was treated with 64.0 mL of 0.0600 M EDTA
Titration of the excess unreacted EDTA required 16.1 mL of 0.0310 M Ca2+
i.e the strength of the Ca2+ = 0.0310 M
Titration of the newly freed EDTA required 14.2 mL of 0.0310 M Ca2+
To determine the concentrations of Cd2+ and Mn2+ in the original solution; we have the following :
Volume of newly freed EDTA = ![\frac{Volume\ of \ Ca^{2+}* Sample \ of \ strength }{Strength \ of EDTA}](https://tex.z-dn.net/?f=%5Cfrac%7BVolume%5C%20of%20%5C%20Ca%5E%7B2%2B%7D%2A%20Sample%20%5C%20of%20%5C%20strength%20%7D%7BStrength%20%5C%20of%20EDTA%7D)
= ![\frac{14.2*0.0310}{0.0600}](https://tex.z-dn.net/?f=%5Cfrac%7B14.2%2A0.0310%7D%7B0.0600%7D)
= 7.3367 mL
concentration of
= ![\frac{volume \ of \ newly \ freed \ EDTA * strength \ of \ EDTA }{volume \ of \ sample}](https://tex.z-dn.net/?f=%5Cfrac%7Bvolume%20%5C%20of%20%5C%20%20newly%20%20%5C%20freed%20%5C%20EDTA%20%2A%20strength%20%5C%20of%20%5C%20EDTA%20%7D%7Bvolume%20%5C%20of%20%5C%20sample%7D)
= ![\frac{7.3367*0.0600}{50}](https://tex.z-dn.net/?f=%5Cfrac%7B7.3367%2A0.0600%7D%7B50%7D)
= 0.0088 M
Thus the concentration of
in the original solution = 0.0088 M
Volume of excess unreacted EDTA = ![\frac{volume \ of \ Ca^{2+} \ * strength \ of Ca^{2+} }{Strength \ of \ EDTA}](https://tex.z-dn.net/?f=%5Cfrac%7Bvolume%20%5C%20of%20%5C%20Ca%5E%7B2%2B%7D%20%5C%20%2A%20strength%20%5C%20of%20Ca%5E%7B2%2B%7D%20%7D%7BStrength%20%5C%20of%20%5C%20EDTA%7D)
= ![\frac{16.1*0.0310}{0.0600}](https://tex.z-dn.net/?f=%5Cfrac%7B16.1%2A0.0310%7D%7B0.0600%7D)
= 8.318 mL
Volume of EDTA required for sample containing
and
= (64.0 - 8.318) mL
= 55.682 mL
Volume of EDTA required for
= Volume of EDTA required for
sample containing
and
-- Volume of newly freed EDTA
Volume of EDTA required for
= 55.682 - 7.3367
= 48.3453 mL
Concentration of
= ![\frac{Volume \ of EDTA \ required \ for Mn^{2+} * strength \ of \ EDTA}{volume \ of \ sample}](https://tex.z-dn.net/?f=%5Cfrac%7BVolume%20%5C%20of%20EDTA%20%5C%20required%20%5C%20for%20Mn%5E%7B2%2B%7D%20%2A%20strength%20%5C%20of%20%5C%20EDTA%7D%7Bvolume%20%5C%20of%20%5C%20sample%7D)
Concentration of
= ![\frac{48.3453*0.0600}{50}](https://tex.z-dn.net/?f=%5Cfrac%7B48.3453%2A0.0600%7D%7B50%7D)
Concentration of
in the original solution= 0.058 M
Thus the concentration of
= 0.058 M