d. Fe(s) and Al(s)
<h3>Further explanation</h3>
In the redox reaction, it is also known
Reducing agents are substances that experience oxidation
Oxidizing agents are substances that experience reduction
The metal activity series is expressed in voltaic series
<em>Li-K-Ba-Ca-Na-Mg-Al-Mn- (H2O) -Zn-Cr-Fe-Cd-Co-Ni-Sn-Pb- (H) -Cu-Hg-Ag-Pt-Au </em>
The more to the left, the metal is more reactive (easily release electrons) and the stronger reducing agent
The more to the right, the metal is less reactive (harder to release electrons) and the stronger oxidizing agent
So that the metal located on the left can push the metal on the right in the redox reaction
The electrodes which are easier to reduce than hydrogen (H), have E cells = +
The electrodes which are easier to oxidize than hydrogen have a sign E cell = -
So the above metals or metal ions will reduce Pb²⁺ (aq) will be located to the left of the Pb in the voltaic series or which have a more negative E cell value (greater reduction power)
The metal : d. Fe(s) and Al(s)
Answer:
See explanation
Explanation:
a) The magnitude of intermolecular forces in compounds affects the boiling points of the compound. Neon has London dispersion forces as the only intermolecular forces operating in the substance while HF has dipole dipole interaction and strong hydrogen bonds operating in the molecule hence HF exhibits a much higher boiling point than Ne though they have similar molecular masses.
b) The boiling points of the halogen halides are much higher than that of the noble gases because the halogen halides have much higher molecular masses and stronger intermolecular forces between molecules compared to the noble gases.
Also, the change in boiling point of the hydrogen halides is much more marked(decreases rapidly) due to decrease in the magnitude of hydrogen bonding from HF to HI. The boiling point of the noble gases increases rapidly down the group as the molecular mass of the gases increases.
Answer:
(iv) (A) is false, but (R) is true.
Explanation:
It is not true that carbon has a strong tendency to either lose or gain electrons to attain noble gas configuration. Carbon is a member of group 14, it is the first member of the group and carbon is purely a non metal. Only metals metals can loose electrons to attain the noble gas configuration. Moreover, carbon does not participate in ionic bonding so it does not gain electrons to attain the noble gas configuration.
However, carbon participates in covalent bonding where it is covalently bonded to four other chemical species using its four outermost electrons. Carbon forms covalent bonds in which four electrons are shared with other chemical species.
You know 1 tbsp is 15 milliliters so you would multiply 15 and 3 together. 15 x 3 =45
So there are 45 milliliters in 3 tbsp.
Ok it’s 38 so I hope that helps ok