<span>If you give it a good search, the most used answer would probably be as follows,
</span><span>In 1914 Henry Moseley found a relationship between an element's X-ray wavelength and its atomic number (Z), and therefore rearranged the table by nuclear charge / atomic number rather than atomic weight. Before this discovery, atomic numbers were just sequential numbers based on an element's atomic weight. Moseley's discovery showed that atomic numbers had an experimentally measurable basis.
</span>
Hope this helps!
Answer: 1560632 joules
Explanation:
The change in thermal energy (Q) required to heat ice depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Given that:
Q = ?
Mass of frozen water (ice) = 1kg
C = 4184 J/(kg K)
Φ = (Final temperature - Initial temperature)
= 100°C - 0°C = 100°C
Convert 100°C to Kelvin
(100°C + 273) = 373K
Then, Q = MCΦ
Q = 1kg x 4184 J/(kg K) x 373K
Q = 1560632 joules
Thus, the change in thermal energy is 1560632 joules
Answer:
No we can’t cover the earth with one mole of pennies
Explanation:
We can’t cover the earth with one mole of pennies due to the fact that making this possible will require the flattening and extra expansion before it covers the whole surface.
The extra expansion and flattening with result in the loss of intermolecular forces and won’t remain as a solid and form other states of matter which won’t be able to cover the surface.
Explanation:
Thus, those metals which remain unaffected by moisture, oxygen and carbon dioxide of the air can occur native or free. In other words, the unreactive metals occur in nature in free state because of their low reactivity towards chemical reagents. ... Metals usually occur in combination with nonmetallic elements.