Ooh, fun
what I would do is to make it a piecewise function where the absolute value becomse 0
because if you graphed y=x^2+x-12, some part of the garph would be under the line
with y=|x^2+x-12|, that part under the line is flipped up
so we need to find that flipping point which is at y=0
solve x^2+x-12=0
(x-3)(x+4)=0
at x=-4 and x=3 are the flipping points
we have 2 functions, the regular and flipped one
the regular, we will call f(x), it is f(x)=x^2+x-12
the flipped one, we call g(x), it is g(x)=-(x^2+x-12) or -x^2-x+12
so we do the integeral of f(x) from x=5 to x=-4, plus the integral of g(x) from x=-4 to x=3, plus the integral of f(x) from x=3 to x=5
A.

B.
sepearte the integrals
![\int\limits^{-5}_{-4} {x^2+x-12} \, dx = [\frac{x^3}{3}+\frac{x^2}{2}-12x]^{-5}_{-4}=(\frac{-125}{3}+\frac{25}{2}+60)-(\frac{64}{3}+8+48)=\frac{23}{6}](https://tex.z-dn.net/?f=%20%5Cint%5Climits%5E%7B-5%7D_%7B-4%7D%20%7Bx%5E2%2Bx-12%7D%20%5C%2C%20dx%20%3D%20%5B%5Cfrac%7Bx%5E3%7D%7B3%7D%2B%5Cfrac%7Bx%5E2%7D%7B2%7D-12x%5D%5E%7B-5%7D_%7B-4%7D%3D%28%5Cfrac%7B-125%7D%7B3%7D%2B%5Cfrac%7B25%7D%7B2%7D%2B60%29-%28%5Cfrac%7B64%7D%7B3%7D%2B8%2B48%29%3D%5Cfrac%7B23%7D%7B6%7D)
next one
![\int\limits^{-4}_3 {-x^2-x+12} \, dx=-1[\frac{x^3}{3}+\frac{x^2}{2}-12x]^{-4}_{3}=-1((-64/3)+8+48)-(9+(9/2)-36))=\frac{343}{6}](https://tex.z-dn.net/?f=%20%5Cint%5Climits%5E%7B-4%7D_3%20%7B-x%5E2-x%2B12%7D%20%5C%2C%20dx%3D-1%5B%5Cfrac%7Bx%5E3%7D%7B3%7D%2B%5Cfrac%7Bx%5E2%7D%7B2%7D-12x%5D%5E%7B-4%7D_%7B3%7D%3D-1%28%28-64%2F3%29%2B8%2B48%29-%289%2B%289%2F2%29-36%29%29%3D%5Cfrac%7B343%7D%7B6%7D)
the last one you can do yourself, it is

the sum is

so the area under the curve is
Answer:
7,173
x = 7
Step-by-step explanation:
Within the question it gives two examples.
x = 0 corresponds to 2000
x = 1 corresponds to 2001
If you pay close attention the x-value is always the same as the last digits in the year. So with 2007 the last digit is 7, which then leads us to determine that
x = 7
f (x) = -327 (7) + 9462
f (x) = -2289 + 9462 = 7173
The probability that the mean of a sample of 106 randomly selected humans is lower than 98.5°F is 4.85%
<h3>What is an
equation?</h3>
An equation is an expression that shows the relationship between two or more numbers and variables.
Z score is given as:
z = (raw score - mean) ÷ (standard deviation/√sample size)
Given mean of 98.6°F, standard deviation is 0.62°F, sample size = 106
For x < 98.5:
z = (98.5 - 98.6) ÷ (0.62÷√106) = -1.66
P(z < -1.66) = 0.0485
The probability that the mean of a sample of 106 randomly selected humans is lower than 98.5°F is 4.85%
Find out more on equation at: brainly.com/question/2972832
#SPJ1
Answer:
x∈{-7√2, 7√2}
Step-by-step explanation:

A = 57
45 + 12 = 57
57 - (-12) = 45