Now to solve this problem, we are given the number of atoms
therefore we must first convert this into number of moles. We can do this by
using the Avogadro’s number. Calculating for number of moles of Carbon:
number of moles Carbon = 21 atoms of carbon (1 mole / 6.022
x 10^23 atoms C)
number of moles Carbon = 3.49 x 10^-23 mol C
Converting this to mass by multiplying the molar mass of
C:
mass Carbon = 3.49 x 10^-23 mol C (12 g / mol)
mass Carbon = 4.18 x 10^-22 g
Therefore the mass of one molecule of Cortisone is:
mass of 1 molecule Cortisone = 4.18 x 10^-22 g / 0.6998
mass of 1 molecule Cortisone = 5.98 x 10^-22 g per molecule
Converting this to mass per 1 mol of Cortisone, by using
again the Avogadro’s number:
mass of 1 mol Cortisone = (5.98 x 10^-22 g / molecule) (<span>6.022
x 10^23 molecules / mol)</span>
mass of 1 mol Cortisone = 360.10 g / mol = molar mass of
cortisone
Answer:
360.10 g / mol
Compounding Corner on RxNet is the best reference for more information regarding compounding
<u>Explanation:</u>
RxNet is an open online community, consolidating scientists from the domains of chemistry, biochemistry and expanding industry of drug innovation and improvement. Compounding presents an innovative way for pharmacists to customize prescriptions to suit the requirements of their patients.
The art of compounding employs advanced medicine while still sticking to the roots of the profession of pharmacy. Compounding pharmacies can create unparalleled dosage forms based on patient preferences. Compounded medicines are usually reliable and sufficient for most victims who have spoken to their physician about their wellness.
Answer:
- <em><u>B) Bill's wagon is moving 4 times faster than Tom's. </u></em>
<u />
Explanation:
The motion of the wagons is determined by the net force that acts upon them, according to Newton's second law of motion:
- Force = mass × acceleration ⇒ acceleration = Force / mass
From your data, you can fill this table to compare the accelerations:
Bill's wagon Tom's wagon
mass (lb) 10 20
force 2F F
acceleration 2F/10 F/20
Find the ratio between both accelarations:
- Bill's wagon acceleration / Tom's wagon acceleration
- (2F/10) / (F/20) = (2 × 20 / 10 ) = 4
Meaning that the acceleration of Bill's wagon is 4 times the acceleration of Tom's wagon.
Assuming, that both wagons start from rest, you can obtain the speeds from the kinematic equation for uniformly accelerated motion:
- Speed = acceleration × time, V = a × t.
Call the acceleration of Tom's wagon X, then the acceleration of Bill's wagon will be 4X.
So, depending on the time, using V = a × t, the speeds will vary:
t (s) 1 2 3 4
Speed Tom's wagon X 2X 3X 4X
Speed Bill's wagon 4X 8X 12X 16X
Concluding that Bill's wagon is moving 4 times faster than Tom's (option B).
Answer:
C₁₂H₂₂O₁₁ and CH₃OH
Explanation:
Sucrose and methyl alcohol are nonelectrolytes. They do not ionize or conduct a current in aqueous solution.
HC₂H₃O₂ is a weak electrolyte. It produces only a few ions and is a poor conductor of electricity in aqueous solution.
HC₂H₃O₂ + H₂O ⇌ H₃O⁺ + C₂H₃O₂⁻
H₂SO₄ is a strong electrolyte. Its first ionization is complete, so it is a good conductor of electricity in aqueous solution.
H₂SO₄ + H₂O ⟶ H₃O⁺ + HSO₄⁻
Anatomy I think it's important to know anatomy as a young adult so u are self aware of your body