Answer:
Explanation:
Area of electrodes, A = 2 cm x 2 cm = 4 cm²
Separation between electrodes, d = 1 mm
Voltage, V = 9 V
(a)
Let C is the capacitance between the electrodes


C = 3.54 x 10^-12 F
Let q be the charge on each of the electrode
q = C x V
q = 3.54 x 10^-12 x 9 = 3.2 x 10^-11 C
(b)
As, the battery is disconnected the charge on the electrodes remains same.
(c)
As the battery is connected the voltage is same.
capacitance is change.
As the distance is doubled, the capacitance becomes half and the charge is also halved. q' = q/2 = 1.6 x 10^-11 C
Her magnitude of deceleration on the ice would be 15.126m/s
Answer:
C) According to the second law of thermodynamics, not all energy from the burnt fuel is used to do work on the piston. It also produces heat which warms other parts of the car.
Explanation:
A) According to the fourth law of thermodynamics, the temperature of the other parts of the car increases due to the coolant used for the engine.
B) According to the first law of thermodynamics, the hood of the car heats up using heat from the surroundings in-order to achieve thermal equilibrium with the engine.
C) According to the second law of thermodynamics, not all energy from the burnt fuel is used to do work on the piston. It also produces heat which warms other parts of the car.
D) According to the third law of thermodynamics, the increase in the velocity of the car changes the entropy of the tires. To balance this change, the temperature of the other parts is increased.
Velocity is define as how fast an object is moving, and in what direction, it is a vector quantity, meaning velocity has both magnitude and direction. Anything goes to the left is negative, and anything goes to the right is positive.
a. Direction from east to west, given distance 11.5 meters, and time of 7.10 s
V = displacement/time V = -11.5/7.10 S V = -1.62 m/s (going left)
b. Joaquin reaches his original position. Displacement is now zero.
Velocity of the lawnmower is equal to "zero" but if we calculate for the average speed of the lawn, you just have to add the distance covered and the time it take to go back at the original position or point of origin