Besides suffocating and inflating like a balloon in the Moon's lack of Oxygen, getting cooked during the Moon's daytime, getting frozen solid during the Moon's night-time, and having no access to the internet or any radio or TV stations, you would weigh only about 16% of what you weigh on Earth because of the Moon's lesser gravity.
So like if you weigh 135 pounds on Earth AND you remembered to bring the bathroom scale with you when you left for the Moon, the scale would show that you weigh only a little over 22 pounds there.
Answer: a quantum mechanic system
Hope this helps
The wavelength of the radiation emitted by the star is 183 nm.
Explanation:
As per Wien's displacement law, the product of emitted wavelength and temperature of the star will be equal to 2.898 × 10⁻³ mK.

So if the wavelength of the emitted radiation by Sun is given as 550 nm, then the temperature of the Sun will be


Then if the temperature of star is said to be 3.5 times hotter than Sun, then the temperature of Star = 3.5×5.27×10³ = 15.81×10³ K.
With this temperature, the wavelength of the emitted radiation can be found as follows:

So, the wavelength of the radiation emitted by the star is 183 nm.
The acceleration increases consequently.
Hope it helps!
Answer:
257 kN.
Explanation:
So, we are given the following data or parameters or information in the following questions;
=> "A jet transport with a landing speed
= 200 km/h reduces its speed to = 60 km/h with a negative thrust R from its jet thrust reversers"
= > The distance = 425 m along the runway with constant deceleration."
=> "The total mass of the aircraft is 140 Mg with mass center at G. "
We are also give that the "aerodynamic forces on the aircraft are small and may be neglected at lower speed"
Step one: determine the acceleration;
=> Acceleration = 1/ (2 × distance along runway with constant deceleration) × { (landing speed A)^2 - (landing speed B)^2 × 1/(3.6)^2.
=> Acceleration = 1/ (2 × 425) × (200^2 - 60^2) × 1/(3.6)^2 = 3.3 m/s^2.
Thus, "the reaction N under the nose wheel B toward the end of the braking interval and prior to the application of mechanical braking" = The total mass of the aircraft × acceleration × 1.2 = 15N - (9.8 × 2.4 × 140).
= 140 × 3.3× 1.2 = 15N - (9.8 × 2.4 × 140).
= 257 kN.