Answer:
1.98 g
Explanation:
The balanced reaction would be:
2CO + O2 = 2CO2
We assume that the gases are ideal gas so that we use the relation that 1 mol of an ideal gas is equal to 22.4 L of the gas at STP. From that relation, we get the number of moles and we can convert it to other units. We do as follows:
1.0 L CO ( 1 mol / 22.4 L ) ( 2 mol CO2 / 2mol CO ) = 0.045 mol CO2 produced
0.045 mol CO2 ( 22.4 L / 1 mol ) = 1 L of CO2
0.045 mol CO2 ( 44.01 g / 1 mol ) = 1.98 g of CO2
Answer:
(CH3)3N(aq)
Explanation:
We have to think of the definition of acid and base in the sense of Brownstead-Lowry. The Brønsted–Lowry theory is an acid–base reaction theory which was proposed independently by Johannes Nicolaus Brønsted and Thomas Martin Lowry in 1923.
A Bronsted-Lowry acid is a chemical species that donates one or more hydrogen ions in a reaction. In contrast, a Bronsted-Lowry base accepts hydrogen ions. When it donates its proton, the acid becomes its conjugate base. A more general approach to the theory is viewing an acid as a proton donor and a base as a proton acceptor.
If we look at the reaction closely, we can see that (CH3)3N(aq) accepted a proton. According to the definition above, we will have to classify (CH3)3N(aq) as a base. Hence the answer.
Fuel cells work by passing hydrogen through the anode of a fuel cell and oxygen through the cathode. On the anode site, hydrogen molecules are split into electrons and protons. They have a high efficiency therefore these fuel cells are also considered to be very clean plus a fuel cells only by-products are electricity, excess heat, and water.
I don’t, but what are Gizmos?