Answer:
The vapor pressure of benzaldehyde at 61.5 °C is 70691.73 torr.
Explanation:
- To solve this problem, we use Clausius Clapeyron equation: ln(P₁/P₂) = (ΔHvap / R) (1/T₁ - 1/T₂).
- The first case: P₁ = 1 atm = 760 torr and T₁ = 451.0 K.
- The second case: P₂ = <em>??? needed to be calculated</em> and T₂ = 61.5 °C = 334.5 K.
- ΔHvap = 48.8 KJ/mole = 48.8 x 10³ J/mole and R = 8.314 J/mole.K.
- Now, ln(P₁/P₂) = (ΔHvap / R) (1/T₁ - 1/T₂)
- ln(760 torr /P₂) = (48.8 x 10³ J/mole / 8.314 J/mole.K) (1/451 K - 1/334.5 K)
- ln(760 torr /P₂) = (5869.62) (-7.722 x 10⁻⁴) = -4.53.
- (760 torr /P₂) = 0.01075
- Then, P₂ = (760 torr) / (0.01075) = 70691.73 torr.
So, The vapor pressure of benzaldehyde at 61.5 °C is 70691.73 torr.
Answer:
Look on the picture.
Explanation:
He could find only 2 isomers of n-hexane alkenes for this reaction. Other two could be marked from other direction.
Answer: check explanation
Explanation:
In this question we are to find mass. In order to calculate the Mass, We need the values of two parameters, that is, the values given for the grade tow chain, and the value given for the mass per length.
Assuming the mass per length is 3 Kilogram per metre(kg/m) and the grade 70 tow chain length is 5 metre(m).
Therefore, the formula for calculating mass of the chain is given below;
Mass of the chain= mass per unit length(kg/m) × length ---------------------------------------------------------------------------------------------------------------------(1).
Mass of the chain= 3 kg/m × 5 m.
Mass of the chain= 15 kg.
Answer:
c) 387g
Explanation:
Water;
Mass = 250g
Specific heat = 4.184
Initial Temp, T1 = 25 + 273 = 298K
Final Temp, T2 = 35 + 273 = 308K
Heat = ?
H = mc(T2 - T1)
H = 250 * 4.184 (308 - 298)
H = 10460 J
Iron;
Initial Temp, T2 = 95 + 273 = 368K (Upon converting to kelvin temperature)
Mass = ?
Final Temp, T1 = 35 + 273 = 308
Heat = 10460 (Heat lost by iron is qual to heat gained by water)
Specific heat = 0.45
H = mc(T2-T1)
M = 10460 / [0.45 (308 - 368)]
M = 10460 / 27
M = 387g