Part (a): Velocity of the snowball
By conservation of momentu;
m1v1 + m2v2 = m3v3,
Where, m1 = mass of snowball, v1, velocity of snowball, m2 = mass of the hat, v2 = velocity of the hat, m3 = mass of snowball and the hat, v3 = velocity of snowball and the hut.
v2 = 0, and therefore,
85*v1 + 0 = 220*8 => v1 = 220*8/85 = 20.71 m/s
Part (b): Horizontal range
x = v3*t
But,
y = vy -1/2gt^2, but y = -1.5 m (moving down), vy =0 (no vertical velocity), g = 9.81 m/s^2
Substituting;
-1.5 = 0 - 1/2*9.81*t^2
1.5 = 4.905*t^2
t = Sqrt (1.5/4.905) = 0.553 seconds
Then,
x = 8*0.553 = 4.424 m
Answer:
Explanation:
I'm in 17th column , a nometal, and a solid at room temperature. What am i
Answer:
a). Determine the magnitude of the gravitational force exerted on each by the earth.
Rock: 
Pebble: 
(b)Calculate the magnitude of the acceleration of each object when released.
Rock: 
Pebble: 
Explanation:
The universal law of gravitation is defined as:
(1)
Where G is the gravitational constant, m1 and m2 are the masses of the two objects and r is the distance between them.
<em>Case for the rock </em>
<em>:</em>
m1 will be equal to the mass of the Earth
and since the rock and the pebble are held near the surface of the Earth, then, r will be equal to the radius of the Earth
.

Newton's second law can be used to know the acceleration.

(2)

<em>Case for the pebble </em>
<em>:</em>


Answer:
65.2 %
Explanation:
Let Q1 = Heat absorbed by the system
Q2 = Heat released by the system
e= (1 - (Q2/Q1)) x 100
e= (1 - (750/2150)) x 100
e= (1 - 0.348) x 100
e= 0.652 x 100
e= 65.2 %