1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks04 [339]
3 years ago
10

Explain why a balloon expands when taken to a higher elevation if the temperature remains constant?

Physics
2 answers:
gladu [14]3 years ago
8 0

B) The decrease in atmospheric pressure relative to pressure inside the balloon causes it to expand.

julia-pushkina [17]3 years ago
3 0
Boyle said that, if temperature of ideal gas is kept constant then pressure and volume of ideal gas are inversely proportional to each other.

Pα1/V
Pressure decreases with elevation therefore volume of balloon increases.
You might be interested in
The three branches of science are ____, earth, and physical
Rom4ik [11]
The three branches of science are life, earth, and physical science.
Life science deals with living organisms, so, biology is the most important of these sciences, although there are many.
Earth science deals with Planet Earth, studying its atmosphere, lithosphere, etc.
Physical science studies the inorganic world.
5 0
3 years ago
Read 2 more answers
A proton is projected toward a fixed nucleus of charge Ze with velocity vo. Initially the two particles are very far apart. When
11111nata11111 [884]

Answer:

The value is R_f =  \frac{4}{5}  R

Explanation:

From the question we are told that

   The  initial velocity of the  proton is v_o

    At a distance R from the nucleus the velocity is  v_1 =  \frac{1}{2}  v_o

    The  velocity considered is  v_2 =  \frac{1}{4}  v_o

Generally considering from initial position to a position of  distance R  from the nucleus

 Generally from the law of energy conservation we have that  

       \Delta  K  =  \Delta P

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

      \Delta K  =  K__{R}} -  K_i

=>    \Delta K  =  \frac{1}{2}  *  m  *  v_1^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * (\frac{1}{2} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

          \Delta P =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P =  k  *  \frac{q_1 * q_2 }{R}  - 0

So

           \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R}  - 0

=>        \frac{1}{2}  *  m  *v_0^2 [ \frac{1}{4} -1 ]  =   k  *  \frac{q_1 * q_2 }{R}

=>        - \frac{3}{8}  *  m  *v_0^2  =   k  *  \frac{q_1 * q_2 }{R} ---(1 )

Generally considering from initial position to a position of  distance R_f  from the nucleus

Here R_f represented the distance of the proton from the nucleus where the velocity is  \frac{1}{4} v_o

     Generally from the law of energy conservation we have that  

       \Delta  K_f  =  \Delta P_f

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus  , this is mathematically represented as

      \Delta K_f   =  K_f -  K_i

=>    \Delta K_f  =  \frac{1}{2}  *  m  *  v_2^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * (\frac{1}{4} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * \frac{1}{16} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R_f  from the nucleus , this is mathematically represented as

          \Delta P_f  =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P_f  =  k  *  \frac{q_1 * q_2 }{R_f }  - 0      

So

          \frac{1}{2}  *  m  * \frac{1}{8} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f }

=>        \frac{1}{2}  *  m  *v_o^2 [-\frac{15}{16} ]  =   k  *  \frac{q_1 * q_2 }{R_f }

=>        - \frac{15}{32}  *  m  *v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f } ---(2)

Divide equation 2  by equation 1

              \frac{- \frac{15}{32}  *  m  *v_o^2 }{- \frac{3}{8}  *  m  *v_0^2  } }   =  \frac{k  *  \frac{q_1 * q_2 }{R_f } }{k  *  \frac{q_1 * q_2 }{R } }}

=>           -\frac{15}{32 } *  -\frac{8}{3}   =  \frac{R}{R_f}

=>           \frac{5}{4}  =  \frac{R}{R_f}

=>             R_f =  \frac{4}{5}  R

   

7 0
3 years ago
What is the kinetic energy in joules of a 0.05. kg bullet traveling 310 m/s
Wittaler [7]
The formula is=1/2(m x v^2)

so = 1/2*(0.05)*(310)^2

ans is =2402.5 joules
3 0
3 years ago
Why is pure oxygen stored as a liquid under pressure
yKpoI14uk [10]
<h2>Answer: It is highly flammable.</h2>

Explanation:

Liquid oxygen is created from oxygen atoms that have been forced to assume the liquid state due to <u>compression (change of pressure) and temperature modification. </u>

Specifically this is achieved by cooling the oxygen enough to change it to its liquid state. So,<u> as the temperature drops, the atoms move more slowly because they have less energy. </u>

In this sense, in the liquid state it is easier to store and mobilize oxygen, taking into account that it is a highly flammable gas.

3 0
3 years ago
Describe the evolution of a pulsar over time, in particular how the rotation and pulse signal changes over time.
madam [21]

Answer:

As beams of particles and their associated energy are given off, the pulsar will lose energy slowly, which will decrease the rate of its rotation. The frequency of pulses would therefore decrease, so that fewer pulses are observed in a given time span. The strength of the pulse signal will also decrease so the pulses will become fainter. Eventually, the pulsar should rotate so slowly and have such a low emission of radiation that it would no longer be observable.

3 0
3 years ago
Other questions:
  • As the wavelength increases, the frequency (2 points) decreases and energy decreases. increases and energy increases. decreases
    8·2 answers
  • Help fast please thsnks
    10·2 answers
  • What does a plant use in photosynthesis and what are the products? <br><br> PLEASE HELP:)
    14·1 answer
  • Need help with these please
    11·2 answers
  • What has a positive charge a comb or rubber band?
    6·2 answers
  • Does Pascals law apply to solids?​
    8·1 answer
  • Plssss help I need help with this question I need a good grade on the test!!!
    11·2 answers
  • PLEASE HELP ME WITH THIISSSSS UGGHHH
    10·1 answer
  • What is magnetic field right and left hand rule​
    11·1 answer
  • ( Basic physics science question)
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!