Answer:
0.4694 moles of CrCl₃
Explanation:
The balanced equation is:
Cr₂O₃(s) + 3CCl₄(l) → 2CrCl₃(s) + 3COCl₂(aq)
The stoichiometry of the equation is how much moles of the substances must react to form the products, and it's represented by the coefficients of the balanced equation. So, 1 mol of Cr₂O₃ must react with 3 moles of CCl₄ to form 2 moles of CrCl₃ and 3 moles of COCl₂.
The stoichiometry calculus must be on a moles basis. The compounds of interest are Cr₂O₃ and CrCl₃. The molar masses of the elements are:
MCr = 52 g/mol
MCl = 35.5 g/mol
MO = 16 g/mol
So, the molar mass of the Cr₂O₃ is = 2x52 + 3x35.5 = 210.5 g/mol.
The number of moles is the mass divided by the molar mass, so:
n = 49.4/210.5 = 0.2347 mol of Cr₂O₃.
For the stoichiometry:
1 mol of Cr₂O₃ ------------------- 2 moles of CrCl₃
0.2347 mol of Cr₂O₃----------- x
By a simple direct three rule:
x = 0.4694 moles of CrCl₃
787.57 grams GIVE ME BRAINLIEST
Answer:
The required volume of hexane is 0.66245 Liters.
Explanation:
Volume of octane = v=1.0 L=
Density of octane= d = 
Mass of octane ,m= 
Moles of octane =
Mole percentage of Hexane = 45%
Mole percentage of octane = 100% - 45% = 55%

Total moles = 11.212 mol
Moles of hexane :

Moles of hexane = 5.0454 mol
Mass of 5.0454 moles of hexane,M = 5.0454 mol × 86 g/mol=433.9044 g
Density of the hexane,D = 
Volume of hexane = V

(1 cm^3= 0.001 L)
The required volume of hexane is 0.66245 Liters.
First, find the number of moles for each element. The molar
mass for nitrogen is 14 g/mol and that of hydrogen is 1 g/mol.
1.40 g N / 14 g/mol = 0.1 mol N
0.20 g H / 1 g/mol = 0.2 mol H
Find the mole ratio. Divide both numbers with the much lower
value. In this case, it is 0.1 mol N.
For N: 0.1 ÷ 0.1 = 1
For H: 0.2÷0.1 = 2
Thus, the empirical formula is
.
check out this article i found it very helpful,
I couldn't find the answer to your question.