1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pychu [463]
2 years ago
10

Air enters a compressor operating at steady state at 176.4 lbf/in.^2, 260°F with a volumetric flow rate of 424 ft^3/min and exit

s at 15.4 lbf/in.^2, 80°F. Heat transfer occurs at a rate of 6800 Btu/h from the compressor to its surroundings. Assuming the ideal gas model for air and neglecting kinetic and potential energy effects, determine the power input, in hp
Engineering
1 answer:
Lera25 [3.4K]2 years ago
6 0

Answer:

W_s  = 283.181 hp

Explanation:

Given that:

Air enters a compressor operating at steady state at a pressure P_1 =  176.4 lbf/in.^2  and Temperature T_1 at 260°F

Volumetric flow rate V = 424 ft^3/min

Air exits at a pressure P_2  = 15.4 lbf/in.^2 and Temperature T_2 at 80°F.

Heat transfer occurs at a rate of 6800 Btu/h from the compressor to its surroundings; since heat is released to the surrounding; then:

Q_{cv} = -6800 Btu/h  = - 1.9924 kW

Using the steady  state  energy in the process;

h_2 - h_1 + g(z_2-z_1)+ \dfrac{1}{2}(v^2_2-v_1^2) = \dfrac{Q_{cv}}{m}- \dfrac{W_s}{m}

where;

g(z_2-z_1) =0  and  \dfrac{1}{2}(v^2_2-v_1^2) = 0

Then; we have :

h_2 - h_1 = \dfrac{Q_{cv}}{m}- \dfrac{W_s}{m}

h_2 - h_1 = \dfrac{Q_{cv} - W_s}{m}

{m}(h_2 - h_1) ={Q_{cv} - W_s}

W_s  ={Q_{cv} + {m}(h_2 - h_1) ----- (1)

Using the relation of Ideal gas equation;

P₁V₁ = mRT₁

Pressure P_1 =  176.4 lbf/in.^2   = ( 176.4 ×  6894.76 ) N/m² = 1216235.664 N/m²

Volumetric flow rate V = 424 ft^3/min = (424 ×  0.0004719) m³  /sec

= 0.2000856 m³  /sec

Temperature = 260°F = (260°F − 32) × 5/9 + 273.15 = 399.817 K

Gas constant R=287 J/kg K

Then;

1216235.664 N/m² × 0.2000856 m³  /sec = m × 287 J/kg K × 399.817 K

m = \dfrac { 1216235.664 N/m^2 \times 0.2000856 m^3  /sec  } {287 J/kg K \times 399.817 K  }

m = 2.121 kg/sec

The change in enthalpy:

m(h_1-h_2) =  m * C_p * \Delta T= m* C_p * ( T_1 -T_2)

= 2.121* 1.005* ( 399.817 -299.817)

= 213.1605 kW

From (1)

W_s  ={Q_{cv} + {m}(h_2 - h_1)

W_s  =  - 1.9924 kW + 213.1605 kW

W_s  = 211.1681  kW

W_s  = 283.181 hp

The power input is W_s  = 283.181 hp

You might be interested in
Resistance to impact is an example of a(n)
Anika [276]

Answer:

Mechanical property

Explanation:

MECHANICAL PROPERTIES can be defined as the ability of a metal or material to remain undamaged after different type of forces has been applied or used on them because forces or loads are often applied to metal, material or physical properties which is why MECHANICAL PROPERTIES enables us to know the strength , toughness as well as the hardness of metal and the way this metal perform or react when different forces are applied on them.

Lastly any metal, material or physical properties that has the strength , hardness and resistance to withstand or remain unaffected despite the loads or forces use on them is an example of MECHANICAL PROPERTIES.

Therefore Resistance to impact is an example of a(n) MECHANICAL PROPERTIES.

8 0
2 years ago
A fixed mass of saturated water vapor at 400 kpa is isothermally cooled until it is a saturated liquid. Calculate the amount of
Kazeer [188]
This is the explanation

6 0
3 years ago
List the three parts of an atom in the Bohr Model
gogolik [260]
Structure Of The Atom: Our current model of the atom can be broken down into three constituents parts – protons, neutron, and electrons. Each of these parts has an associated charge, with protons carrying a positive charge, electrons having a negative charge, and neutrons possessing no net charge.
7 0
2 years ago
Handsaw teeth are very sharp: to avoid being cut by the teeth, keep hands and fingers well away from the
siniylev [52]
Handsaw teeth are very sharp: to avoid being cut by the teeth, keep hands and fingers well away from the
path of the blade
6 0
2 years ago
Read 2 more answers
An ideal Otto cycle has a compression ratio of 9.2 and uses air as the working fluid. At the beginning of the compression proces
Allushta [10]

Answer:

(a) The amount of heat transferred to the air, q_{out} is 215.5077 kJ/kg

(b) The net work output, W_{net}, is 308.07 kJ/kg

(c) The thermal efficiency is 58.8%

(d) The Mean Effective Pressure, MEP, is 393.209 kPa

Explanation:

(a) The assumptions made are;

c_p = 1.005 kJ/(kg·K), c_v = 0.718 kJ/(kg·K), R = 0.287 kJ/(kg·K),

Process 1 to 2 is isentropic compression, therefore;

T_{2}= T_{1}\left (\dfrac{v_{1}}{v_{2}}  \right )^{k-1} = 300.15\times 9.2^{0.4} = 729.21 \, K

From;

\dfrac{p_{1}\times v_{1}}{T_{1}} = \dfrac{p_{2}\times v_{2}}{T_{2} }

We have;

p_{2} = \dfrac{p_{1}\times v_{1}\times T_{2}}{T_{1} \times v_{2}} = \dfrac{98\times 9.2\times 729.21}{300.15 } = 2190.43 \, kPa

Process 2 to 3 is reversible constant volume heating, therefore;

\dfrac{p_3}{T_3} =\dfrac{p_2}{T_2}

p₃ = 2 × p₂ = 2 × 2190.43 = 4380.86 kPa

T_3 = \dfrac{p_3 \times T_2}{p_2} =\dfrac{4380.86  \times 729.21}{2190.43} = 1458.42 \, K

Process 3 to 4 is isentropic expansion, therefore;

T_{3}= T_{4}\left (\dfrac{v_{4}}{v_{3}}  \right )^{k-1}

1458.42= T_{4} \times \left (9.2 \right )^{0.4}

T_4 = \dfrac{1458.42}{(9.2)^{0.4}}  = 600.3 \, K

q_{out} = m \times c_v \times (T_4 - T_1) = 0.718  \times (600.3 - 300.15) = 215.5077 \, kJ/kg

The amount of heat transferred to the air, q_{out} = 215.5077 kJ/kg

(b) The net work output, W_{net}, is found as follows;

W_{net} = q_{in} - q_{out}

q_{in} = m \times c_v \times (T_3 - T_2) = 0.718  \times (1458.42 - 729.21) = 523.574 \, kJ/kg

\therefore W_{net} = 523.574 - 215.5077 = 308.07 \, kJ/kg

(c) The thermal efficiency is given by the relation;

\eta_{th} = \dfrac{W_{net}}{q_{in}} \times 100=  \dfrac{308.07}{523.574} \times 100= 58.8\%

(d) From the general gas equation, we have;

V_{1} = \dfrac{m\times R\times T_{1}}{p_{1}} = \dfrac{1\times 0.287\times 300.15}{98} =0.897\, m^{3}/kg

The Mean Effective Pressure, MEP, is given as follows;

MEP =\dfrac{W_{net}}{V_1 - V_2} = \dfrac{W_{net}}{V_1 \times (1- 1/r)}= \dfrac{308.07}{0.897\times (1- 1/9.2)} = 393.209 \, kPa

The Mean Effective Pressure, MEP = 393.209 kPa.

3 0
3 years ago
Other questions:
  • g The pump inlet is located 1 m above an arbitrary datum. The pressure and velocity at the inlet are 100 kPa and 2 m/s, respecti
    8·1 answer
  • 3. Air at 1 atm and 20 0 C flows tangentially on both sides of a smooth flat plate of width W=10 ft and length L=10 ft in the di
    8·1 answer
  • How does a carburetor work?
    7·1 answer
  • A stream of air enters a 7.00-cm ID pipe at a velocity of 30.0 m/s at 27.0°C and 1.80 bar (gauge). At a point downstrream, the a
    15·1 answer
  • A stainless-steel specimen from the same material characterized up above, was formed into a rectangular cross-section of dimensi
    9·1 answer
  • The unit weight of a soil is 14.9kN/m3. The moisture content of the soil is17% when the degree of saturation is 60%. Determine:
    15·1 answer
  • What type of drawing would civil engineers use if they needed to show an
    11·1 answer
  • Print reading for industry unit 9 review questions
    6·2 answers
  • Water at 20◦C is pumped through 1000 ft of 0.425 ft diameter pipe at a volumetric flowrate of 1 ft3/s through a cast iron pipe t
    14·1 answer
  • The typical Canadian worker is able to produce 100 board feet (a unit of measure) of lumber or 1000 light bulbs per year. The wo
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!