1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pychu [463]
3 years ago
10

Air enters a compressor operating at steady state at 176.4 lbf/in.^2, 260°F with a volumetric flow rate of 424 ft^3/min and exit

s at 15.4 lbf/in.^2, 80°F. Heat transfer occurs at a rate of 6800 Btu/h from the compressor to its surroundings. Assuming the ideal gas model for air and neglecting kinetic and potential energy effects, determine the power input, in hp
Engineering
1 answer:
Lera25 [3.4K]3 years ago
6 0

Answer:

W_s  = 283.181 hp

Explanation:

Given that:

Air enters a compressor operating at steady state at a pressure P_1 =  176.4 lbf/in.^2  and Temperature T_1 at 260°F

Volumetric flow rate V = 424 ft^3/min

Air exits at a pressure P_2  = 15.4 lbf/in.^2 and Temperature T_2 at 80°F.

Heat transfer occurs at a rate of 6800 Btu/h from the compressor to its surroundings; since heat is released to the surrounding; then:

Q_{cv} = -6800 Btu/h  = - 1.9924 kW

Using the steady  state  energy in the process;

h_2 - h_1 + g(z_2-z_1)+ \dfrac{1}{2}(v^2_2-v_1^2) = \dfrac{Q_{cv}}{m}- \dfrac{W_s}{m}

where;

g(z_2-z_1) =0  and  \dfrac{1}{2}(v^2_2-v_1^2) = 0

Then; we have :

h_2 - h_1 = \dfrac{Q_{cv}}{m}- \dfrac{W_s}{m}

h_2 - h_1 = \dfrac{Q_{cv} - W_s}{m}

{m}(h_2 - h_1) ={Q_{cv} - W_s}

W_s  ={Q_{cv} + {m}(h_2 - h_1) ----- (1)

Using the relation of Ideal gas equation;

P₁V₁ = mRT₁

Pressure P_1 =  176.4 lbf/in.^2   = ( 176.4 ×  6894.76 ) N/m² = 1216235.664 N/m²

Volumetric flow rate V = 424 ft^3/min = (424 ×  0.0004719) m³  /sec

= 0.2000856 m³  /sec

Temperature = 260°F = (260°F − 32) × 5/9 + 273.15 = 399.817 K

Gas constant R=287 J/kg K

Then;

1216235.664 N/m² × 0.2000856 m³  /sec = m × 287 J/kg K × 399.817 K

m = \dfrac { 1216235.664 N/m^2 \times 0.2000856 m^3  /sec  } {287 J/kg K \times 399.817 K  }

m = 2.121 kg/sec

The change in enthalpy:

m(h_1-h_2) =  m * C_p * \Delta T= m* C_p * ( T_1 -T_2)

= 2.121* 1.005* ( 399.817 -299.817)

= 213.1605 kW

From (1)

W_s  ={Q_{cv} + {m}(h_2 - h_1)

W_s  =  - 1.9924 kW + 213.1605 kW

W_s  = 211.1681  kW

W_s  = 283.181 hp

The power input is W_s  = 283.181 hp

You might be interested in
Can someone please help me with this <br>I've an exams tomorrow ​
krok68 [10]
Take another picture i cant see nun
5 0
3 years ago
The correct statement about the lift and drag on an object is:_______
Lisa [10]

Answer:

(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift

Explanation:

When a fluid flows around the surface of an object, it exerts a force on it. This force has two components, namely lift and drag.

The component of this force that is perpendicular (normal) to the freestream velocity is known as lift, while the component of this force that is parallel or in the direction of the fluid freestream flow is known as drag.

Lift is as a result of pressure differences, while drag results from forces due to pressure distributions over the object surface, and forces due to skin friction or viscous force.

Thus, drag results from the combination of pressure and viscous forces while lift results only from the<em> pressure differences</em> (not pressure forces as was used in option D).

The only correct option left is "A"

(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift

8 0
3 years ago
Read 2 more answers
A smooth ceramic sphere (SG 5 2.6) is immersed in a fl ow of water at 208C and 25 cm/s. What is the sphere diameter if it is enc
Aleks [24]

Answer:

a. 4\mu m

b. 1 m

Explanation:

According to the question, the data is as follows

The Density of water at 20 degrees celcius is 1000 kg/m^3

Viscosity is 0.001kg/m/.s

Velocity V = 25 cm/s

V = 0.25 m/s

Now

a. The creeping motion is

As we know that

Reynold Number = (Density of water × V × d) ÷ (Viscosity)

1 = (1,000 × 0.25 × d) ÷ 0.0001

d = (1 × 0.001) ÷ (1,000 × 0.25)

= 4E - 06^m

= 4\mu m

b. Now the sphere diameter is

Reynold Number = (Density of water × V × d) ÷ (Viscosity)

250,000 = (1,000 × 0.25 × d) ÷ 0.0001

d = (250,000 × 0.001) ÷ (1,000 × 0.25)

= 1 m

6 0
3 years ago
A heat pump cycle is used to maintain the interior of a building at 15°C. At steady state, the heat pump receives energy by heat
Hoochie [10]

Answer:

a) Ql=33120000 kJ

b) COP = 5.6

c) COPreversible= 29.3

Explanation:

a) of the attached figure we have:

HP is heat pump, W is the work supplied, Th is the higher temperature, Tl is the low temperature, Ql is heat supplied and Qh is the heat rejected. The worj is:

W=Qh-Ql

Ql=Qh-W

where W=2000 kWh

Qh=120000 kJ/h

Q_{l}=14days(\frac{24 h}{1 day})(\frac{120000 kJ}{1 h})-2000 kWh(\frac{3600 s}{1 h})=33120000 kJ

b) The coefficient of performance is:

COP=\frac{Q_{h} }{W}=\frac{120000 kJ/h*14(\frac{24 h}{1 day}) }{2000 kWh(\frac{3600 s}{1 h}) } = 5.6

c) The coefficient of performance of a reversible heat pump is:

COP_{reversible}=\frac{T_{h} }{T_{h}-T_{l}  }

Th=20+273=293 K

Tl=10+273=283K

Replacing:

COP_{reversible}=\frac{293}{293-283}=29.3

4 0
3 years ago
What are Tresca and Von Mises yield criteria?
elena-s [515]

Answer

For isotropic material plastic yielding depends upon magnitude of the principle stress not on the direction.

Tresca and Von Mises yield criteria are the yield model which is widely used.

The Tresca yield criterion stated that yielding will occur in a material only when the greatest maximum shear stress reaches a critical value.

max{|σ₁ - σ₂|,|σ₂ - σ₃|,|σ₃ - σ₁|} = σ_f

under plane stress condition

  |σ₁ - σ₂| = σ_f

The Von mises yielding criteria stated that the yielding will occur when elastic energy of distortion reaches critical value.

σ₁² - σ₁ σ₂ + σ₂² =  σ²_f

5 0
3 years ago
Other questions:
  • Which of the following does NOT describe product design.
    11·1 answer
  • List four reasons why we need aceuracy in machined parts.
    8·1 answer
  • A cylinder contains 480 cm3 of loose dry sand which weighs 820 g. Under a static load of 200 kPa the volume is reduced 1%, and t
    15·1 answer
  • Its an opinion!!!!
    8·1 answer
  • Air in a 10 ft3 cylinder is initially at a pressure of 10 atm and a temperature of 330 K. The cylinder is to be emptied by openi
    10·2 answers
  • A Gaussian random voltage X volts is input to a half-wave rectifier and the output voltage is Y = Xu (X) Volts were u (x) is the
    9·1 answer
  • 7. A single-pole GFCI breaker is rated at
    9·1 answer
  • A power plant burns natural gas to supply heat to a heat engine which rejects heat to the adjacent river. The power plant produc
    11·1 answer
  • A series of end-milling cuts is currently used to produce an aluminum part that is an aircraft component. The purpose of the mac
    14·1 answer
  • On calculating which of the following quantities , does the body have an effect in simple projectile motion?​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!