<span>We can use Coulomb's law to find the force F acting on the proton that is released.
F = k x Q1 x Q2 / r^2
k = 9 x 10^9
Q1 is the charge on one proton which is 1.6 x 10^{-19} C
Q2 is the same charge on the other proton
r is the distance between the protons
F = (9x10^9) x (1.6 x 10^{-19} C) x (1.6 x 10^{-19} C) / (10^{-3})^2
F = 2.304 x 10^{-22} N
We can use the force to find the acceleration.
F = ma
a = F / m
a = (2.304 x 10^{-22} N) / (1.67 x 10^{-27} kg)
a = 1.38 x 10^5 m/s^2
The initial acceleration of the proton is 1.38 x 10^5 m/s^2</span>
Answer: A piston-filling fountain pen has a piston — just like in a car — inside the barrel. This piston goes down to expel air or ink and then back up, pulling ink into the barrel. The typical process is very simple, assuming the pen is clean and dry: Push the piston down, expelling any air in the barrel
The person is at rest with respect to the car. So the best answer is:
c. the front seat of the car.
Answer:
The magnitude of the average angular acceleration of the disk is
.
Explanation:
Given that,
Angular velocity, 
The disk comes to rest, 
Time, t = 0.234 s
We need to find the magnitude of the average angular acceleration of the disk. It is given by change in angular velocity per unit time. So,

So, the magnitude of the average angular acceleration of the disk is
.
Answer:
Explanation:
Wave produced in string and waves produced in air are different . The only similarity is that their frequency are equal . Otherwise , no similarity . One is transverse ( on wire ) , the other is longitudinal ( air ) . Their velocities too are different .
velocity = wavelength x frequency
if frequency is constant
wavelength ∝ velocity
wavelength is proportional to velocity . Since their velocities are different , their wavelength too will be different.