If you have no idea what the voltage is that you're about to measure,
then you should set the meter to the highest range before you connect
it to the two points in the circuit.
Analog meters indicate the measurement by moving a physical needle
across a physical card with physical numbers printed on it. If the unknown
voltage happens to be 100 times the full range to which the meter is set,
then the needle may find itself trying to move to a position that's 100 times
past the highest number on the meter's face. You'll hear a soft 'twang',
followed by a louder 'CLICK'. Then you'll wonder why the meter has no
needle on it, and then you'll walk over to the other side of the room and
pick up the needle off the floor, and then you'll probably put the needle
in your pocket. That will end your voltage measurements for that day,
and certainly for that meter.
Been there.
Done that.
Answer:
C.Supersaturated
Explanation:
There are three types of solution:
<u>SATURATED SOLUTION</u>:
It is the solution that contains maximum amount of solute dissolved in a solution in normal conditions.
<u>UNSATURATED SOLUTION</u>:
It is the solution that contains less than the maximum amount of solute dissolved in a solution in normal conditions. It has space for more solute to be dissolved in it.
<u>SUPERSATURATED SOLUTION:</u>
It contains more than the maximum amount of solute dissolved in it. Such a solution has no capacity to dissolve any more solute under any conditions.
Since the sugar is no more dissolving in the tea and has settled down. Therefore, the solution is:
<u>C.Supersaturated</u>
Answer:
Organic matter decomposition serves two functions for the microorganisms, providing energy for growth and suppling carbon for the formation of new cells. ... Dead plant residues and plant nutrients become food for the microbes in the soil
Explanation:
Answer:
The magnitude of the free-fall acceleration at the orbit of the Moon is
(
, where
).
Explanation:
According to the Newton's Law of Gravitation, free fall acceleration (
), in meters per square second, is directly proportional to the mass of the Earth (
), in kilograms, and inversely proportional to the distance from the center of the Earth (
), in meters:
(1)
Where:
- Gravitational constant, in cubic meters per kilogram-square second.
- Mass of the Earth, in kilograms.
- Distance from the center of the Earth, in meters.
If we know that
,
and
, then the free-fall acceleration at the orbit of the Moon is:

