Answer:
The current in the second loop will stay constant
Explanation:
Since the induced emf in the second coil, ε due to the changing current i₁ in the first wire loop ε = -Mdi₁/dt where M = mutual inductance of the coils and di₁/dt = rate of change of current in the first coil = + 1 A/s (positive since it is clockwise)
Now ε = i₂R where i₂ = current in second wire loop and R = resistance of second wire loop.
So, i₂R = -Mdi₁/dt
i₂ = -Mdi₁/dt/R
Since di₁/dt = + 1 A/s,
i₂ = -Mdi₁/dt/R
i₂ = -M × + 1 A/s/R
i₂ = -M/R
Since M and R are constant, this implies that i₂ = constant
<u>So, the current in the second wire loop will stay constant.</u>
yup..........................................
Answer:
it is because it is quieter at night than in the daytime. Therefore it is easy to hear the sound far away. However, it is only one of the reasons. Actually, sound transmits farther at night may be related to refraction of sound waves! First, sound is the vibration of air, and it is a kind of wave motion.
Explanation:
i believe the awnser is Amplitude