Answer:
1) tensile stress = 76.648 Mpa
2) extension = 0.0215 m
Explanation:
Detailed explanation and calculation is shown in the image below
Answer:
20.62361 rad/s
489.81804 J
Explanation:
= Initial moment of inertia = 9.3 kgm²
= Final moment of inertia = 5.1 kgm²
= Initial angular speed = 1.8 rev/s
= Final angular speed
As the angular momentum of the system is conserved

The resulting angular speed of the platform is 20.62361 rad/s
Change in kinetic energy is given by

The change in kinetic energy of the system is 489.81804 J
As the work was done to move the weight in there was an increase in kinetic energy
Given data:
- It is a graphical display where the data is grouped in to ranges
- A diagram consists rectangles, whose area is proportional to frequency of a variable and whose width is equal to the class interval.
- It is an accurate representation of the distribution of numerical data.
<em>From Figure:</em>
Each box in the graph (small rectangle box) is assumed to be one download. So, in the graph the time between 8 p.m to 9 p.m, the number of downloads are 8.75 approximately (because the last box is incomplete, therefore 8 complete boxes and 9th is more than half).
<em>So, We conclude that the total number of downloads are approximately 9 in the time span of 8 p.m. to 9 p.m.</em>
Answer:
T = 0.225 s
Explanation:
The speed of a projectile at the highest point of its motion is the horizontal speed of the projectile. Considering the horizontal motion with negligible air resistance, we can use the following formula:

where,
T = Total time of ball in air = ?
R = Horizontal distance covered = 40 m
= horizontal speed = 9 m/s
Therefore,

<u>T = 0.225 s</u>
well it would be A because 55 degrees is going strait well 75 is going literally straight up