<span>The chemical reaction of a reversible reaction is actually
governed by Le Chatelier’s principle. It states that when more reactants are
introduced into the system, the reaction will proceed forward to create more
products. So since Hydrogen is a reactant and Nitrogen is also reactant so
adding more Hydrogen makes more products hence reducing the Nitrogen
concentration.</span>
Answer:

Explanation:
Hello,
In this case, since silver is initially hot as it cools down, the heat it loses is gained by the liquid, which can be thermodynamically represented by:

That in terms of the heat capacities, masses and temperature changes turns out:

Since no phase change is happening. Thus, solving for the heat capacity of the liquid we obtain:

Best regards.
The one abt respiration the answer is the first one and circulatory system is the last one that says “delivery molecules …”
Answer:
∆H° rxn = - 93 kJ
Explanation:
Recall that a change in standard in enthalpy, ∆H°, can be calculated from the inventory of the energies, H, of the bonds broken minus bonds formed (H according to Hess Law.
We need to find in an appropiate reference table the bond energies for all the species in the reactions and then compute the result.
N₂ (g) + 3H₂ (g) ⇒ 2NH₃ (g)
1 N≡N = 1(945 kJ/mol) 3 H-H = 3 (432 kJ/mol) 6 N-H = 6 ( 389 kJ/mol)
∆H° rxn = ∑ H bonds broken - ∑ H bonds formed
∆H° rxn = [ 1(945 kJ) + 3 (432 kJ) ] - [ 6 (389 k J]
∆H° rxn = 2,241 kJ -2334 kJ = -93 kJ
be careful when reading values from the reference table since you will find listed N-N bond energy (single bond), but we have instead a triple bond, N≡N, we have to use this one .