Answer:
eyes
Explanation:
It is because the mouth, large intestine and stomach comes in the digestive system abd eyes doesn't.
HOPE THIS HELPS
You need to specify the experiment to get an answer. However, most experiments require qualitative data (descriptive, non-numerical data) and quantitative data (measured, numerical data).
Answer:
0.36 M
Explanation:
There is some info missing. I think this is the complete question.
<em>Suppose a 250 mL flask is filled with 0.30 mol of N₂ and 0.70 mol of NO. The following reaction becomes possible:
</em>
<em>N₂(g) +O₂(g) ⇄ 2 NO(g)
</em>
<em>The equilibrium constant K for this reaction is 7.70 at the temperature of the flask. Calculate the equilibrium molarity of O₂. Round your answer to two decimal places.</em>
<em />
Initially, there is no O₂, so the reaction can only proceed to the left to attain equilibrium. The initial concentrations of the other substances are:
[N₂] = 0.30 mol / 0.250 L = 1.2 M
[NO] = 0.70 mol / 0.250 L = 2.8 M
We can find the concentrations at equilibrium using an ICE Chart. We recognize 3 stages (Initial, Change, and Equilibrium) and complete each row with the concentration or change in the concentration.
N₂(g) +O₂(g) ⇄ 2 NO(g)
I 1.2 0 2.8
C +x +x -2x
E 1.2+x x 2.8 - 2x
The equilibrium constant (K) is:
![K=7.70=\frac{[NO]^{2}}{[N_{2}][O_{2}]} =\frac{(2.8-2x)^{2} }{(1.2+x).x}](https://tex.z-dn.net/?f=K%3D7.70%3D%5Cfrac%7B%5BNO%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%7D%20%3D%5Cfrac%7B%282.8-2x%29%5E%7B2%7D%20%7D%7B%281.2%2Bx%29.x%7D)
Solving for x, the positive one is x = 0.3601 M
[O₂] = 0.3601 M ≈ 0.36 M
Answer:
True
Explanation:
*For polar and associated substances, methods based on four should be used four or more parameters, like analytical equation of state
*The term "analytical equation of state" implies that the function
It contains powers of v not greater than four.
*Most expressions are of the cubic type and are grouped into
the so-called cubic equations of state.
*Cubic EoS calls are very popular in simulation of
processes due to its robustness and its simple extension to mixtures.
*They are based on the van der Waals state equation of more than
100 years.
<u>Answer</u><u>:</u><u> </u>Rudolf Virchow