Answer:
160.3g
Explanation:
We know the equation:
No of moles = mass ÷ Mass of element
We need to find the mass, so make mass the subject of the formula.
Mass = No. of moles × mass of element
Mass = 5 × 32.06
Mass = 160.3g
Answer:
The atoms on left side are larger than the atoms on the right side of the periodic table because those on the right have more proton's.
Explanation:
As we travel along a period in a periodic table then the atomic radii decreases
This is because as we travel along a period we have that the atomic number of the atoms increases which means the the number of proton's increased
But the electron's add to the same outer shell throughout the period , which means the effective nuclear charge increases which pulls the outer electrons toward's the nucleus and the size decreases.
Therefore the atoms on left side are larger than the atoms on the right side of the periodic table because those on the right have more proton's.
Answer: ΔH for the reaction is -277.4 kJ
Explanation:
The balanced chemical reaction is,

The expression for enthalpy change is,
![\Delta H=\sum [n\times \Delta H(products)]-\sum [n\times \Delta H(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%28products%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%28reactant%29%5D)
![\Delta H=[(n_{CCl_4}\times \Delta H_{CCl_4})+(n_{HCl}\times B.E_{HCl}) ]-[(n_{CH_4}\times \Delta H_{CH_4})+n_{Cl_2}\times \Delta H_{Cl_2}]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%28n_%7BCCl_4%7D%5Ctimes%20%5CDelta%20H_%7BCCl_4%7D%29%2B%28n_%7BHCl%7D%5Ctimes%20B.E_%7BHCl%7D%29%20%5D-%5B%28n_%7BCH_4%7D%5Ctimes%20%5CDelta%20H_%7BCH_4%7D%29%2Bn_%7BCl_2%7D%5Ctimes%20%5CDelta%20H_%7BCl_2%7D%5D)
where,
n = number of moles
Now put all the given values in this expression, we get
![\Delta H=[(1\times -139)+(1\times -92.31) ]-[(1\times -74.87)+(1\times 121.0]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%281%5Ctimes%20-139%29%2B%281%5Ctimes%20-92.31%29%20%5D-%5B%281%5Ctimes%20-74.87%29%2B%281%5Ctimes%20121.0%5D)

Therefore, the enthalpy change for this reaction is, -277.4 kJ
<h3><u>Answer;</u></h3>
NH3/NH4+
<h3><u>Explanation;</u></h3>
From the equation;
NH3(aq)+HNO3(aq)→NH4+(aq)+NO3−(aq)
NH3 is the base; while NH4+ is the conjugate acid
HNO3 is the acid; while NO3- is the conjugate base
- The conjugate base of a Brønsted-Lowry acid is species that is formed after an acid donates a proton while the conjugate acid of a Brønsted-Lowry base is the species formed after a base accepts a proton.