The daughter isotope : Radon-222 (Rn-222).
<h3>Further explanation</h3>
Given
Radium (Ra-226) undergoes an alpha decay
Required
The daughter nuclide
Solution
Radioactivity is the process of unstable isotopes to stable isotopes by decay, by emitting certain particles,
- alpha α particles ₂He⁴
- beta β ₋₁e⁰ particles
- gamma particles ₀γ⁰
- positron particles ₁e⁰
- neutron ₀n¹
The decay reaction uses the principle: the sum of the atomic number and mass number before and after decay are the same
Radium (Ra-226) : ₈₈²²⁶Ra
Alpha particles : ₂⁴He
So Radon-226 emits alpha α particles ₂He⁴ , so the atomic number decreases by 2, mass number decreases by 4
The reaction :
₈₈²²⁶Ra ⇒ ₂⁴He + ₈₆²²²Rn
Answer:
Primer postulado:
Así Bohr asumió que el átomo de hidrógeno puede existir solo en ciertos estados discretos, los cuales son denominados estados estacionarios del átomo. En el átomo no hay emisión de radiación electromagnética mientras el electrón no cambia de órbita.
Explanation:
If the O-Zone Tropo increased to a point, like it has, it can cause a huge variety of health problems and even death! Some of the problems include, but are not limited to: Asthma, E<span>mphysema, Chest Pain, Inflamed Lungs and Lung Scarring from tissue damage. </span>
Answer:
100 g
Explanation:
From the question given above, the following data were obtained:
Original amount (N₀) = 400 g
Time (t) = 4 years
Half-life (t½) = 2 years
Amount remaining (N) =?
Next, we shall determine the number of half-lives that has elapse. This can be obtained as follow:
Time (t) = 4 years
Half-life (t½) = 2 years
Number of half-lives (n) =?
n = t / t½
n = 4 / 2
n = 2
Thus, 2 half-lives has elapsed.
Finally, we shall determine the amount remaining of the radioactive isotope. This can be obtained as follow:
Original amount (N₀) = 400 g
Number of half-lives (n) = 2
Amount remaining (N) =?
N = 1/2ⁿ × N₀
N = 1/2² × 400
N = 1/4 × 400
N = 0.25 × 400
N = 100 g
Thus, the amount of the radioactive isotope remaing is the 100 g.