The molar mass of an element represents how many grams of that specific element are in one mole of that specific element
It would be most likely to be found in carbohydrates
Answer:
0.886 J/g.°C
Explanation:
Step 1: Calculate the heat absorbed by the water
We will use the following expression
Q = c × m × ΔT
where,
- c: specific heat capacity
- ΔT: change in the temperature
Q(water) = c(water) × m(water) × ΔT(water)
Q(water) = 4.184 J/g.°C × 50.0 g × (34.4 °C - 25.36 °C) = 1.89 × 10³ J
According to the law of conservation of energy, the sum of the energy lost by the solid and the energy absorbed by the water is zero.
Q(water) + Q(solid) = 0
Q(solid) = -Q(water) = -1.89 × 10³ J
Step 2: Calculate the specific heat capacity of the solid
We will use the following expression.
Q(solid) = c(solid) × m(solid) × ΔT(solid)
c(solid) = Q(solid) / m(solid) × ΔT(solid)
c(solid) = (-1.89 × 10³ J) / 32.53 g × (34.4 °C - 100. °C) = 0.886 J/g.°C
solution of potassium chlorate,
K
C
I
O
3
, has 20 grams of the salt dissolved in 100 grams of water at 70 C. Approximately how many more grams of the salt can be added to the solution before reaching the saturation point?