Adding because evaporation speed is increased with increased temperature
Answer:
32.6%
Explanation:
Equation of reaction
2KClO₃ (s) → 2KCl (s) + 3O₂ (g)
Molar mass of 2KClO₃ = 245.2 g/mol ( 122.6 × 2)
Molar volume of Oxygen at s.t.p = 22.4L / mol
since the gas was collected over water,
total pressure = pressure of water vapor + pressure of oxygen gas
0.976 = 0.04184211 atm + pressure of oxygen gas at 30°C
pressure of oxygen = 0.976 - 0.04184211 = 0.9341579 atm = P1
P2 = 1 atm, V1 = 789ml, V2 = unknown, T1 = 303K, T2 = 273k at s.t.p
Using ideal gas equation
=
V2 =
V2 = 664.1052 ml
245.2 yielded 67.2 molar volume of oxygen
0.66411 will yield =
= 2.4232 g
percentage of potassium chlorate in the original mixture =
= 32.6%
Answer:
209.98 g of NaOH
Explanation:
We are given;
- Volume of HCl as 3 L
- Molarity of HCl as 1.75 M
We are required to calculate the mass of NaOH required to completely neutralize the acid given.
First, we write a balanced equation for the reaction between NaOH and HCl
That is;
NaOH + HCl → NaCl + H₂O
Second, we determine the number of moles of HCl
Number of moles = Molarity × Volume
= 1.75 M × 3 L
= 5.25 moles
Third, we use the mole ratio to determine the moles of NaOH
From the reaction,
1 mole of NaOH reacts with 1 mole of HCl
Therefore;
Moles of NaOH = Moles of HCl
= 5.25 moles
Fourth, we determine the mass of NaOH
Molar mass of NaOH = 39.997 g/mol
Mass of NaOH = 5.25 moles × 39.997 g/mol
= 209.98 g
Thus, 209.98 g of NaOH will completely neutralize 3L of 1.74 M HCl
Answer:
B
Explanation:
The gravity accelleration values are the same for both planets.
Explanation:
The reaction equation will be as follows.

Hence, moles of Na = moles of electron used
Therefore, calculate the number of moles of sodium as follows.
No. of moles = 
=
(as 1 kg = 1000 g)
= 195.65 mol
As, Q =
where F = Faraday's constant
= 
=
mol C
Relation between electrical energy and Q is as follows.
E = 
Hence, putting the given values into the above formula and then calculate the value of electricity as follows.
E = 
= 
= 
As 1 J =
kWh
Hence,
kWh
= 3.39 kWh
Thus, we can conclude that 3.39 kilowatt-hours of electricity is required in the given situation.