Answer:
0.21486 mm
Explanation:
The formula for the maximum intensity is given by;
I = I_o•cos²(Φ/2)
Now,we are not given Φ but it can be expressed in terms of what we are given as; Φ = πdy/(λL)
Where;
y is the distance from the central maximum
d is the distance between the slits
λ is the wavelength
L is the distance to the screen
Thus;
I = I_o•πdy/(λL)
We are given;
d = 0.05 mm = 0.5 × 10^(-3) m
λ = 540 nm = 540 × 10^(-9) m
L = 1.25 m
I/I_o = 50% = 0.5
From earlier, we saw that;
I = I_o•πdy/(λL)
We have I/I_o = 0.5
Thus;
I/I_o = πdy/(λL)
Plugging in the relevant values;
0.5 = (π × 0.5 × 10^(-3) × y)/(540 × 10^(-9) × 1.25)
Making y the subject, we have;
y = (0.5 × 540 × 10^(-9) × 1.25)/(π × 0.5 × 10^(-3))
y = 0.00021486 m
Converting to mm, we have;
y = 0.21486 mm
<h2>
<em><u>⇒</u></em>Answer:</h2>
In the standing broad jump, one squats and then pushes off with the legs to see how far one can jump. Suppose the extension of the legs from the crouch position is 0.600 m and the acceleration achieved from this position is 1.25 times the acceleration due to gravity, g . How far can they jump? State your assumptions. (Increased range can be achieved by swinging the arms in the direction of the jump.)
Step-by-Step Solution:
Solution 35PE
This question discusses about the increased range. So, we shall assume that the angle of jumping will be as the horizontal range is maximum at this angle.
Step 1 of 3<
/p>
The legs have an extension of 0.600 m in the crouch position.
So, m
The person is at rest initially, so the initial velocity will be zero.
The acceleration is m/s2
Acceleration m/s2
Let the final velocity be .
Step 2 of 3<
/p>
Substitute the above given values in the kinematic equation ,
m/s
Therefore, the final velocity or jumping speed is m/s
Explanation:
Answer:
50m
Explanation:im just smart thank me later
1.) Pitch
2.)Wavelength
3.)Density/Elastic Properties-b. Two of the above
4.)Liquids
5.) I'm not sure but I'm pretty sure it's the Doppler effect
6.) Frequency Increases