In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.
Answer:
Following are the solution to the given question:
Explanation:
Its best approach to this measurement ought to be to indicate that there was a mistake throughout the calculation, as well as the gathering of further details while researching cells for bacteria, directly measuring the cell length of a colony. This chart illustrates its data, which scientists have observed that there's still a measurement.
Answer:
0.217 m/s
Explanation:
The protons in the beam passes undeflected when the electric force is equal to the magnetic force:
qE = qvB
where
q is the proton's charge
E is the magnitude of the electric field
v is the speed of the protons
B is the magnitude of the magnetic field
Re-arranging the equation,

And by substituting
E = 0.5 N/C
B = 2.3 T
We find

Answer:
they use thermals and air currents to glide.
Explanation:
when they flap higher they use thermals and air currents because flapping takes a lot of fuel,energy
Answer:
I will answer this in English, we can translate it to:
Why if you charge a mate by an amount of time you are not doing work?
This happens because work is defined as the displacement done by a force:
W = d*F
where W is work, d is the distance, and F is the force.
This means that the amount of time that you are charging your mate does not affect the mechanical work, the only time that you are doing work is when you are lifting him.