U=RI Ohm's law
then R=U/I
=120/0.08
=2250Ω
hope this helps you
Answer
given,
mass of ball = 5.93 kg
length of the string = 2.35 m
revolve with velocity of 4.75 m/s
acceleration due to gravity = 9.81 m/s²
T cos θ = mg
T cos θ = 
T cos θ = 58.17






T² - 56.93T - 3383.75 = 0
T = 93.22 N

θ = 51.39°
Answer:
v₀ = 280.6 m / s
Explanation:
we have the shock between the bullet and the block that we can work with at the moment and another part where the assembly (bullet + block) compresses a spring, which we can work with mechanical energy,
We write the mechanical energy when the shock has passed the bodies
Em₀ = K = ½ (m + M) v²
We write the mechanical energy when the spring is in maximum compression

½ (m + M) v² = ½ k x²
Let's calculate the system speed
v = √ [k x² / (m + M)]
v = √[152 ×0.78² / (0.012 +0.109) ]
v = 27.65 m / s
This is the speed of the bullet + Block system
Now let's use the moment to solve the shock
Before the crash
p₀ = m v₀
After the crash

The system is formed by the bullet and block assembly, so the forces during the crash are internal and the moment is preserved

m v₀ = (m + M) v
v₀ = v (m + M) / m
let's calculate
v₀ = 27.83 (0.012 +0.109) /0.012
v₀ = 280.6 m / s
Answer:
The fraction of its volume inside liquid is increased .
Explanation:
According to principle pf floatation , an object floats on the surface of water
when the weight of liquid displaced by it becomes equal to weight of the object . weight of the liquid depends upon the density of the liquid .
In the second case , when the body is dipped into liquid of lesser density , in order to balance the weight of body , more volume of liquid will be displaced so that weight of displaced liquid becomes equal to object's weight . So the body floats with greater depth inside liquid . The fraction of its volume inside liquid is increased .