<span>At an instant when the displacement is equal to a/2,
Potential energy U = 1/2ka(square) where a is displacement.
when a= a/2
U = 1/4ka(square)
U = E/4
Potential Energy = 1/4 Total energy</span>
Answer:
303.9481875 N
Explanation:
t = Time taken = 2 seconds
F = Force
r = Radius = 1.5 m
I = Moment of Inertia
= Angular Acceleration
Torque



Angular velocity

Angular acceleration



The magnitude of the force to stop the merry-go-round is 303.9481875 N
If there's any point in a circuit where the current has a choice
of which branch to take, then you have a <em>parallel circuit</em>.
Final speed = initial speed + (acceleration x time)
(final speed - initial speed) = acceleration x time
Time = (final speed - initial speed) / acceleration
voltage across 2.0μf capacitor is 5.32v
Given:
C1=2.0μf
C2=4.0μf
since two capacitors are in series there equivalent capacitance will be
[tex] \frac{1}{c} = \frac{1}{c1} + \frac{1}{c2} [/tex]


=1.33μf
As the capacitance of a capacitor is equal to the ratio of the stored charge to the potential difference across its plates, giving: C = Q/V, thus V = Q/C as Q is constant across all series connected capacitors, therefore the individual voltage drops across each capacitor is determined by its its capacitance value.
Q=CV
given,V=8v


charge on 2.0μf capacitor is


=5.32v
learn more about series capacitance from here: brainly.com/question/28166078
#SPJ4