With the equation <span>A₂+2B₂→2AB₂ we know that one mole of A₂ is necessary to react with two moles of B₂ and with that, we obtain two moles of the product. ( you can see this by just seeing what numbers are before the letters)
Since it's needed more quantity of B than A, B is the limited reagent.
</span>
People call water a 'universal solvent' because it is capable of dissolving more<span> substances than any other liquid. I think</span> it could<span> can be a major problem if every substance was readily soluble by water or any solvent. If so, it would mean that there is nothing that could contain water if it was not completely saturated with another solute. All in all, t</span><span>he idea of a universal solvent would be just impossible to imagine.</span>
Answer:
The specific heat of the alloy 
Explanation:
Mass of an alloy
= 25 gm
Initial temperature
= 100°c = 373 K
Mass of water
= 90 gm
Initial temperature of water
= 25.32 °c = 298.32 K
Final temperature
= 27.18 °c = 300.18 K
From energy balance equation
Heat lost by alloy = Heat gain by water
[
-
] =
(
-
)
25 ×
× ( 373 - 300.18 ) = 90 × 4.2 (300.18 - 298.32)

This is the specific heat of the alloy.
The answer is 1.56L. Avogadro's Law states that the volume of a gas is directly proportional to the number of moles (or a number of particles) of gas when the temperature and pressure are held constant.
V∝n
V₁/n₁m= V₂/n₂
V₁ = initial volume of gas = 12.5 L
V₂ = final volume of gas = ?
n₁ = initial moles of gas = 0.016 mole
n₂ = final moles of gas = 0.016-0.007 = 0.002 mole
V₁/n₁m= V₂/n₂
V₂= 1.56L
Avogadro's Law is in evidence whenever you blow up a balloon. The volume of the balloon increases as you add moles of gas to the balloon by blowing it up.
Learn more about Volume here:
brainly.com/question/5018408
#SPJ4
Answer:
The right answer is B) evaporation
Explanation:
Transpiration occurs at the leaf surface which is the loss of water due to the evaporation. This phenomenon works as trigger of water and mineral movement above to the xylem. Due to the evaporation of water at the leaf, negative pressure is created at the surface of leaf. Tension is produced which results in the pull of water from roots up to the xylem vessels.