Taking into account the reaction stoichiometry, 5.33 moles of NH₃ are formed from the complete reaction of 16 grams of H₂.
<h3>Reaction stoichiometry</h3>
In first place, the balanced reaction is:
N₂ + 3 H₂ → 2 NH₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- N₂: 1 mole
- H₂: 3 moles
- NH₃: 2 moles
The molar mass of the compounds is:
- N₂: 14 g/mole
- H₂: 2 g/mole
- NH₃: 17 g/mole
Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
- N₂: 1 mole ×14 g/mole= 14 grams
- H₂: 3 moles ×2 g/mole= 6 grams
- NH₃: 2 moles ×17 g/mole=34 grams
<h3>Mass of NH₃ formed</h3>
The following rule of three can be applied: if by reaction stoichiometry 6 grams of H₂ form 2 moles of NH₃, 16 grams of H₂ form how many moles of NH₃?

<u><em>moles of NH₃= 5.33 moles</em></u>
Then, 5.33 moles of NH₃ are formed from the complete reaction of 16 grams of H₂.
Learn more about the reaction stoichiometry:
brainly.com/question/24741074
brainly.com/question/24653699
#SPJ1
reactants because it had other chemicals, when more are mixed it will be more stronger.
It is the correct answer
hi im breanna
Answer:
The mole is simply a very large number that is used by chemists as a unit of measurement.
Explanation:
The mole is simply a very large number,
6.022
×
10
23
, that has a special property. If I have
6.022
×
10
23
hydrogen atoms, I have a mass of 1 gram of hydrogen atoms . If I have
6.022
×
10
23
H
2
molecules, I have a mass of 2 gram of hydrogen molecules. If I have
6.022
×
10
23
C
atoms, I have (approximately!) 12 grams.
The mole is thus the link between the micro world of atoms and molecules, and the macro world of grams and litres, the which we can easily measure by mass or volume. The masses for a mole of each element are given on the periodic table as the atomic weight. So, if have 12 g of
C
, I know, fairly precisely, how many atoms of carbon I have. Given this quantity, I know how many molecules of
O
2
are required to react with the
C
, which I could measure by mass or by volume.
Data:
n (number of mols) = ?
V (volume) = 2.50 Liters
If:
1 L → 1000 g
2.50 L → y
y = 1000*2.50 = 2500 g
Therefore:
m (mass) = 2500 g
Now:
Molar Mass (MM) of oxygen = 16 g/mol
Formula:

Solving:


Answer:
Atoms are often more stable when bonded to other atoms
Explanation:
Like for example let's say ionic bonds..... Since one atom has to lose specific electrons to be stable and the other needs the electrons from the other atom to be stable.....