Answer:
2.09 atm
Explanation:
We can solve this problem by using the equation of state for an ideal gas, which relates the pressure, the volume and the temperature of an ideal gas:

where
p is the pressure of the gas
V is its volume
n is the number of moles
R is the gas constant
T is the absolute temperature
In this problem we have:
n = 0.65 mol is the number of moles of the gas
V = 8.0 L is the final volume of the gas
is the temperature of the gas
is the gas constant
Solving for p, we find the final pressure of the gas:

Answer:
The heat of the solution of salt is 1.66.11 J/g.
Explanation:
Mass of the water = m = 46.52 g
Initial temperature of the water = 
Final temperature of the water = 
The specific heat of water, c = 4.180 J/gºC
Heat associated with water on dissolving salt: q



Negative sign means that heat was lost by water on an addition of a salt.
Heat released on dissolving of salt = -Q = 748.65 J
Mass of salt added = 4.5069 g
Heat of the solution of salt :
= 
The heat of the solution of salt is 1.66.11 J/g.
Explanation:
A chemical change results from a chemical reaction, while a physical change is when matter changes forms but not chemical identity. Examples of chemical changes are burning, cooking, rusting, and rotting. Examples of physical changes are boiling, melting, freezing, and shredding.
To understand why cooking is a chemical change, you should first understand what is a chemical change. Basically, all changes in this world can be classified as either physical changes or chemical changes. The difference is that chemical changes bring about new substances while physical changes don’t. Take the example of baking: when you bake a cake, the most immediately observable change is that it expands. This is because the baking soda in it has undergone a chemical change under heat to release carbon dioxide. Notice there is no carbon dioxide in the cake before we bake it. That is what I mean by bringing about new substances.
So why is cooking a chemical change? Because almost all cooking methods involving the rise of temperature (which is basically to say, all cooking methods) involve chemical changes. Once under heat, the antioxidants omnipresent in vegetables will get oxidized and the proteins in meats will get denatured. Among other things, the former process will mostly result in the change of color of the vegetables, and the latter the stiffening of the meats
Answer:
Approximately
.
Explanation:
Balanced equation for this reaction:
.
Look up the relative atomic mass of elements in the limiting reactant,
, as well as those in the product of interest,
:
Calculate the formula mass for both the limiting reactant and the product of interest:
.
.
Calculate the quantity of the limiting reactant (
) available to this reaction:
.
Refer to the balanced equation for this reaction. The coefficients of the limiting reactant (
) and the product (
) are both
. Thus:
.
In other words, for every
of
formula units that are consumed,
of
formula units would (in theory) be produced. Thus, calculate the theoretical yield of
in this experiment:
.
Calculate the theoretical yield of this experiment in terms of the mass of
expected to be produced:
.
Given that the actual yield in this question (in terms of the mass of
) is
, calculate the percentage yield of this experiment:
.
Answer:
6.791
Explanation:
For proper significant figures with addition, you would use the significant figures of the number with lowest decimal place. 6.298 goes to the 10⁻³ place. 0.492712 goes to the 10⁻⁶ place. You will go out to the 10⁻³ place.
6.298 + 0.492712 = 6.790712 ≈ 6.791