Answer:
Here's what I get.
Explanation:
According to Markovnikov's rule, the H will add to a terminal carbon, generating three resonance stabilized carbocations.
The Br⁻ ion will add to any of the three carbocations.
There are three possible products:
- 5-bromo-2,5-dimethylhexa-1,3-triene (1)
- 3-bromo-2,5-dimethylhexa-1,4-triene (<em>2</em>)
- 1-bromo-2,5-dimethylhexa-2,4-triene (3)
Think of it this way,
Mix Iron and sulphur in a bowl. How do you separate them? Use a magnet right. Yes.
Now, mix the iron and sulphur together but know, heat them up. Let them cool for a while. After that, use a magnet to separate. You cant. This is because the compound (FeS) now has a different property from its original components.
Apply this theory onto salts.
Answer:
New pressure = 42216.66 Pa
Explanation:
Given that,
Initial volume, V₁ = 5 m³
Final pressure, P₁ = 101320 Pa
Final volume, V₂ = 12 m³
We need to find the final pressure of the gas. We know that the relation between pressure and volume is given by :

So, the new pressure is equal to 42216.66 Pa.
Answer:
A voltaic cell
Explanation:
A voltaic cell is a device which converts chemical energy to electrical energy. The chemical reactions that take place inside the cell causes electrons to flow from anode to cathode hence, electricity is produced. A simple voltaic cell is made by placing two different metals in contact with an electrolyte separated by a salt bridge. The cathode is the negative electrode while the anode is the positive electrode. It is also called a galvanic cell.
In a voltaic cell having a copper/copper solution half cell, reduction occurs at the cathode. Hence, at the cathode copper II ions accept two electrons and become reduced to ordinary metallic copper. This causes the blue colour of the solution to become discharged (fade) as the cell continues to function.