Answer:
Calculating Coefficient of friction is 0.229.
Force is 4.5 N that keep the block moving at a constant speed.
Explanation:
We know that speed expression is as
.
Where,
is initial speed, V is final speed, ∆s displacement and a acceleration.
Given that,
=3 m/s, V = 0 m/s, and ∆s = 2 m
Substitute the values in the above formula,

0 = 9 - 4a
4a = 9

is the acceleration.
Calculating Coefficient of friction:


Compare the above equation

Cancel "m" common term in both L.H.S and R.H.S





Hence coefficient of friction is 0.229.
calculating force:


F = 4.5 N
Therefore, the force would be <u>4.5 N</u> to keep the block moving at a constant speed across the floor.
1 in=2.54 cm=(2.54 cm)(1 m/100 cm)=0.0254 m
Therefore:
1 in=0.0254 m
1 in³=(0.0254 m)³=1.6387064 x 10⁻⁵ m³
Therefore:
8.06 in³=(8.06 in³)(1.6387064 x 10⁻⁵ m³ / 1 in³)≈1.321 x 10⁻⁴ m³.
Answer: 8.06 in³=1.321 x 10⁻⁴ m³
Answer:
T = 693.147 minutes
Explanation:
The tank is being continuously stirred. So let the salt concentration of the tank at some time t be x in units of kg/L.
Therefore, the total salt in the tank at time t = 1000x kg
Brine water flows into the tank at a rate of 6 L/min which has a concentration of 0.1 kg/L
Hence, the amount of salt that is added to the tank per minute = 
Also, there is a continuous outflow from the tank at a rate of 6 L/min.
Hence, amount of salt subtracted from the tank per minute = 6x kg/min
Now, the rate of change of salt concentration in the tank = 
So, the rate of change of salt in the tank can be given by the following equation,

or, 
or, T = 693.147 min (time taken for the tank to reach a salt concentration
of 0.05 kg/L)
Friction? For example, like when a car's tires skid on rough concrete.