<em><u>This</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>can</u></em><em><u> </u></em><em><u>do</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>boy</u></em><em><u> </u></em><em><u>or</u></em><em><u> </u></em><em><u>girl</u></em><em><u> </u></em>
<h3><u>Answer;</u></h3>
the north end to the south end.
<h3><u>Explanation;</u></h3>
- Magnetic field lines from a bar magnet form lines that are closed. The direction of magnetic field is taken to be outward from the North pole of the magnet and in to the South pole of the magnet.
- A magnetic field refers to the area surrounding a magnet where a force is exerted on certain objects. These lines are spread out of the north end of the magnet.
- The magnetic field lines resemble a bubble.
Answer:
here as we increase the distance the intensity will decrease and hence the amplitude of the electric field will decrease and vice-versa
Explanation:
As wee know that the amplitude of the wave will decide the energy of the wave
Here we know that energy density of electromagnetic wave is given as

now we have

so here we can say that intensity of the wave at the given distance from the source is given by formula

so here as we increase the distance the intensity will decrease and hence the amplitude of the electric field will decrease and vice-versa.
Intense temperature and pressure of regional metamorphism
Explanation:
The process that cause the formation of the Vishnu Schist is the intense temperature and pressure as a result of regional metamorphism.
- Regional metamorphism is an extensive metamorphism of an area as a result of temperature and pressure changes.
- The schist is a foliated metamorphic rock usually found in areas of moderate to high grade temperature and pressure.
- The Vishnu schist must have been metamorphosed before the new sediments were deposited on top.
Learn more:
Contact metamorphism brainly.com/question/1970623
#learnwithBrainly
Answer:
mu = 0.56
Explanation:
The friction force is calculated by taking into account the deceleration of the car in 25m. This can be calculated by using the following formula:

v: final speed = 0m/s (the car stops)
v_o: initial speed in the interval of interest = 60km/h
= 60(1000m)/(3600s) = 16.66m/s
x: distance = 25m
BY doing a the subject of the formula and replace the values of v, v_o and x you obtain:

with this value of a you calculate the friction force that makes this deceleration over the car. By using the Newton second's Law you obtain:

Furthermore, you use the relation between the friction force and the friction coefficient:

hence, the friction coefficient is 0.56