1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlada [557]
3 years ago
10

1. Susan pushes her dad, David, on an ice rink with a force of 30 N. She weighs 45 kg and her dad weighs 100 kg. What are the ac

celerations of Susan and David?
Physics
1 answer:
mamaluj [8]3 years ago
8 0

Explanation:

Given parameters:

Force = 30N

Weight Susan = 45kg

Weight of Dad = 100kg

Unknown:

Acceleration of Susan = ?

Acceleration of Dad = ?

Solution:

                    Force = mass x acceleration

  Acceleration = \frac{force}{mass}

 Acceleration of Susan = \frac{30}{45} = 0.67m/s²

Acceleration of Dad =  \frac{30}{100}  = 0.3m/s²

Learn more:

Acceleration brainly.com/question/3820012

#learnwithBrainly

You might be interested in
Arrange these metric prefixes from smallest to largest.<br> Deca <br> Deci<br> Micro<br> milli
Ahat [919]

Answer:

micro

milli

deci  

deca

7 0
3 years ago
According to newton's first law, what is required to make an object slow down?
Luden [163]
I believe it is friction

3 0
3 years ago
Read 2 more answers
One of the waste products of a nuclear reactor is plutonium-239 . This nucleus is radioactive and decays by splitting into a hel
Gekata [30.6K]

Answer:

a) v_{U-235} = 2.68 \cdot 10^{5} m/s

v_{He-4} = -1.57 \cdot 10^{7} m/s  

b) E_{He-4} = 8.23 \cdot 10^{-13} J

E_{U-235} = 1.41 \cdot 10^{-14} J

 

Explanation:

Searching the missed information we have:                                        

E: is the energy emitted in the plutonium decay = 8.40x10⁻¹³ J

m(⁴He): is the mass of the helium nucleus = 6.68x10⁻²⁷ kg  

m(²³⁵U): is the mass of the helium U-235 nucleus = 3.92x10⁻²⁵ kg            

a) We can find the velocities of the two nuclei by conservation of linear momentum and kinetic energy:

Linear momentum:

p_{i} = p_{f}

m_{Pu-239}v_{Pu-239} = m_{He-4}v_{He-4} + m_{U-235}v_{U-235}

Since the plutonium nucleus is originally at rest, v_{Pu-239} = 0:

0 = m_{He-4}v_{He-4} + m_{U-235}v_{U-235}  

v_{He-4} = -\frac{m_{U-235}v_{U-235}}{m_{He-4}}    (1)

Kinetic Energy:

E_{Pu-239} = \frac{1}{2}m_{He-4}v_{He-4}^{2} + \frac{1}{2}m_{U-235}v_{U-235}^{2}

2*8.40 \cdot 10^{-13} J = m_{He-4}v_{He-4}^{2} + m_{U-235}v_{U-235}^{2}    

1.68\cdot 10^{-12} J = m_{He-4}v_{He-4}^{2} + m_{U-235}v_{U-235}^{2}   (2)    

By entering equation (1) into (2) we have:

1.68\cdot 10^{-12} J = m_{He-4}(-\frac{m_{U-235}v_{U-235}}{m_{He-4}})^{2} + m_{U-235}v_{U-235}^{2}  

1.68\cdot 10^{-12} J = 6.68 \cdot 10^{-27} kg*(-\frac{3.92 \cdot 10^{-25} kg*v_{U-235}}{6.68 \cdot 10^{-27} kg})^{2} +3.92 \cdot 10^{-25} kg*v_{U-235}^{2}  

Solving the above equation for v_{U-235} we have:

v_{U-235} = 2.68 \cdot 10^{5} m/s

And by entering that value into equation (1):

v_{He-4} = -\frac{3.92 \cdot 10^{-25} kg*2.68 \cdot 10^{5} m/s}{6.68 \cdot 10^{-27} kg} = -1.57 \cdot 10^{7} m/s                        

The minus sign means that the helium-4 nucleus is moving in the opposite direction to the uranium-235 nucleus.

b) Now, the kinetic energy of each nucleus is:

For He-4:

E_{He-4} = \frac{1}{2}m_{He-4}v_{He-4}^{2} = \frac{1}{2} 6.68 \cdot 10^{-27} kg*(-1.57 \cdot 10^{7} m/s)^{2} = 8.23 \cdot 10^{-13} J

For U-235:

E_{U-235} = \frac{1}{2}m_{U-235}v_{U-235}^{2} = \frac{1}{2} 3.92 \cdot 10^{-25} kg*(2.68 \cdot 10^{5} m/s)^{2} = 1.41 \cdot 10^{-14} J

 

I hope it helps you!                                                                                    

3 0
3 years ago
An amusement park ride consists of a rotating circular platform 11.1 m in diameter from which 10 kg seats are suspended at the e
frozen [14]

To solve this problem we will use the relationship given between the centripetal Force and the Force caused by the weight, with respect to the horizontal and vertical components of the total tension given.

The tension in the vertical plane will be equivalent to the centripetal force therefore

Tsin\theta= \frac{mv^2}{r}

Here,

m = mass

v = Velocity

r = Radius

The tension in the horizontal plane will be subject to the action of the weight, therefore

Tcos\theta = mg

Matching both expressions with respect to the tension we will have to

T = \frac{\frac{mv^2}{r}}{sin\theta}

T = \frac{mg}{cos\theta}

Then we have that,

\frac{\frac{mv^2}{r}}{sin\theta} =  \frac{mg}{cos\theta}

\frac{mv^2}{r} = mg tan\theta

Rearranging to find the velocity we have that

v = \sqrt{grTan\theta}

The value of the angle is 14.5°, the acceleration  (g) is 9.8m/s^2 and the radius is

r = \frac{\text{diameter of rotational circular platform}}{2} + \text{length of chains}

r = \frac{11.1}{2}+2.41

r = 7.96m

Replacing we have that

v = \sqrt{(9.8)(7.96)tan(14.5\°)}

v = 4.492m/s

Therefore the speed of each seat is 4.492m/s

6 0
3 years ago
Use the dot product to find the magnitude of u if u = 6i - 3j
LuckyWell [14K]
Vector u :
u = 6 i - 3 j
The magnitude of vector u :
| u | = \sqrt{6 ^{2}+(-3) ^{2}  } = \sqrt{36+9}= \\  \sqrt{45}= \sqrt{9*5}=3  \sqrt{5}
Answer:
The magnitude of vector u is 3√5. 
3 0
3 years ago
Other questions:
  • Suppose the lift force on the plane in the diagram below was larger than the force of gravity. Which of the following statements
    5·1 answer
  • How does the ability to balance a chemical equation relate to that reaction obeying the Law of Conservation of Matter?
    15·1 answer
  • What is the average intensity of the wave after it passes through polarizer b?
    15·1 answer
  • I throw a ball upward at 40 m/s what is the acceleration
    7·1 answer
  • A simple pendulum with length L is swinging freely with
    6·1 answer
  • A 1000-n weight is hanging from a 2.0 m long aluminum rod. A 500-n weight is hanging from a 1.0 m long aluminum rod. The two alu
    11·1 answer
  • 2. A person standing at
    6·1 answer
  • Martha was leaning out of the window on the second floor of her house and speaking to Steve. Suddenly, her glasses slipped from
    6·1 answer
  • Difference between Pascal’s law and law of flotation
    14·1 answer
  • What is the direction of the normal contact force of the road on the wheels?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!