1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoundrel [369]
3 years ago
6

An advanced computer sends information to its various parts via infrared light pulses traveling through silicon fibers (n = 3.50

). To acquire data from memory, the central processing unit sends a light-pulse request to the memory unit. The memory unit processes the request, then sends a data pulse back to the central processing unit. The memory unit takes 0.50 ns to process a request. If the information has to be obtained from memory in 2.00 ns, what is the maximum distance the memory unit can be from the central processing unit?
Physics
1 answer:
sasho [114]3 years ago
8 0

Answer:

d = 6.43 cm

Explanation:

Given:

- Speed resistance coefficient in silicon n = 3.50

- Memory takes processing time t_p = 0.50 ns

- Information is to be obtained within T = 2.0 ns

Find:

- What is the maximum distance the memory unit can be from the central processing unit?

Solution:

- The amount of time taken for information pulse to travel to memory unit:

                            t_m = T - t_p

                            t_m = 2.0 - 0.5 = 1.5 ns

- We will use a basic relationship for distance traveled with respect to speed of light and time:

                           d = V*t_m

- Where speed of light in silicon medium is given by:

                           V = c / n

- Hence,              d = c*t_m / n

-Evaluate:           d = 3*10^8*1.5*10^-9 / 3.50

                           d = 0.129 m 12.9 cm

- The above is the distance for pulse going to and fro the memory and central unit. So the distance between the two is actually d / 2 = 6.43 cm

You might be interested in
An 8.00 kg mass moving east at 15.4 m/s on a frictionless horizontal surface collides with a 10.0 kg object that is initially at
andrew-mc [135]

Answer:

9.3m/s

Explanation:

Based on the law of conservation of momentum

Sum of momentum before collision = sum of momentum after collision

m1u1 +m2u2 = m1v1+m2v2

m1 = 8kg

u1 = 15.4m/s

m2 = 10kg

u2 = 0m/s(at rest)

v1 = 3.9m/s

Required

v2.

Substitute

8(15.4)+10(0) = 8(3.9)+10v2

123.2=31.2+10v2

123.2-31.2 = 10v2

92 = 10v2

v2 = 92/10

v2 = 9.2m/s

Hence the velocity of the 10.0 kg object after the collision is 9.2m/s

6 0
3 years ago
Alfredo makes a diagram to organize his notes about charging objects.
konstantin123 [22]

The region marked X in the diagram shows that the objects have the same charge.

<h3>What is conduction?</h3>

The term conduction has to do with the manner of charging in which charge is passed from one object to another. Induction involves charging objects without the objects touching each other.

The region marked X in the diagram shows that the objects have the same charge.

Learn ore about conduction:brainly.com/question/15306642

#SPJ1

8 0
1 year ago
What is the relationship between temperature and altitude in the stratosphere? (2 points).
stealth61 [152]
As altitude increases, temperature increases. The stratosphere is the part of the atmosphere that starts in the tropopause and ends in the estratopause. In the troposphere, the air is close to the Earth surface. The air surface can absorb more sunlight energy than the air, so the Earth surface heats the air. As you go higher, the distance to the Earth surface is higher, so the temperature is lower. The troposphere ends in the tropopause, where this trend changes. In the estratopause, there is a lot of ozone, which absorbs the dangerous UV radiation and converts into heat. That heat warms the air. So the air which is close to the estratopause is warm because of the heat released by the ozone reactions. The tropopause is far from the Earth surface and far from the ozone layer, that’s why it is cold. So the tropopause is cold and the estratopause is warm, which means: the air becomes warmer <span>as you rise above the tropopause until you get to the estratopause.</span>
8 0
3 years ago
An astronaut finds herself in a predicament in which she has become untethered from her shuttle. She figures that she could get
Blizzard [7]

In order to solve the problem, it is necessary to apply the concepts related to the conservation of momentum, especially when there is an impact or the throwing of an object.

The equation that defines the linear moment is given by

mV_i = (m-m_O)V_f - m_OV_O

where,

m=Total mass

m_O = Mass of Object

V_i = Velocity before throwing

V_f = Final Velocity

V_O = Velocity of Object

Our values are:

m_1=5.3kgm_2=7.9kg\\m_3=10.5kg\\m_A=75kg\\m_{Total}=m=98.7Kg

Solving to find the final speed, after throwing the object we have

V_f=\frac{mV_0+m_TV_O}{m-m_O}

We have three objects. For each object a launch is made so the final mass (denominator) will begin to be subtracted successively. In addition, during each new launch the initial speed will be given for each object thrown again.

That way during each section the equations should be modified depending on the previous one, let's start:

A) 5.3Kg\rightarrow 15m/s

V_{f1}=\frac{mV_0+m_TV_O}{m-m_O}

V_{f1}=\frac{(98.7)*0+5.3*15}{98.7-5.3}

V_{f1}=0.8511m/s

B) 7.9Kg\rightarrow 11.2m/s

V_{f2}=\frac{mV_{f1}+m_TV_O}{m-m_O}

V_{f2}=\frac{(98.7)(0.8511)+(7.9)(11.2)}{98.7-5.3-7.9}

V_{f2} = 2.0173m/s

C) 10.5Kg\rightarrow 7m/s

V_{f3}=\frac{mV_{f2}+m_TV_O}{m-m_O}

V_{f3}=\frac{(98.7)(2.0173)+(10.5)(7)}{98.7-5.3-7.9-10.5}

V_{f3} = 3.63478m/s

Therefore the final velocity of astronaut is 3.63m/s

7 0
3 years ago
"Which of the following statements about electrons is not true?
gogolik [260]

Answer:

B) Within an atom, an electron can have only particular energies.

Explanation:

As we know that electrons have energy but apart from electrons we know that protons and neutrons inside the nucleus of atom will also have energy in them.

rest all the statements are true as we have

A) Electrons orbit the nucleus rather like planets orbiting the Sun.

TRUE, because electrons can move in stationary orbit around the nucleus

C) Electrons can jump between energy levels in an atom only if they receive or give up an amount of energy equal to the difference in energy between the energy levels.

Difference amount of energy is lost or absorbed by the electron in form of photons

D) An electron has a negative electrical charge.

Charge of an electron is given as -1.6 \times 10^{-19} C

E) Electrons have very little mass compared to protons or neutrons

Mass of an electron is given as

m_e = 9.11 \times 10^{-31} kg

mass of proton or neutron

m_p = 1.67 \times 10^{-27} kg

7 0
3 years ago
Other questions:
  • 3. Ohm’s Law is represented by the equation I=V/R. Explain how the current would change if the amount of resistance decreased an
    15·1 answer
  • What is the proper function of a linkage? *
    6·1 answer
  • How do you know when a penalty has been called?
    15·1 answer
  • A jet lands with a speed of 100 m/s and can accelerate uniformly at a rate of -5.0 m/s^2 as it comes to rest. What is the minimu
    5·1 answer
  • The intensity of the sound from a certain source is measured at two points along a line from the source. The points are separate
    7·1 answer
  • What is melting? when an ice cube turns from a solid to a liquid, the particles
    12·2 answers
  • In the example given below, Aaron applies a force of 300N and Bob applies a force of 450N :
    9·1 answer
  • How much force is needed to accelerate at 66 kg skier 4m/s^2 ?​
    14·1 answer
  • A lorry pulls forward after initially being stationary, it takes the lorry 80m to reach a speed of
    12·1 answer
  • A truck of mass 10000kg moving through a sloppy road of length 20km with the help of 5000N force. If the truck climbs the vertic
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!