Answer:
9.3m/s
Explanation:
Based on the law of conservation of momentum
Sum of momentum before collision = sum of momentum after collision
m1u1 +m2u2 = m1v1+m2v2
m1 = 8kg
u1 = 15.4m/s
m2 = 10kg
u2 = 0m/s(at rest)
v1 = 3.9m/s
Required
v2.
Substitute
8(15.4)+10(0) = 8(3.9)+10v2
123.2=31.2+10v2
123.2-31.2 = 10v2
92 = 10v2
v2 = 92/10
v2 = 9.2m/s
Hence the velocity of the 10.0 kg object after the collision is 9.2m/s
The region marked X in the diagram shows that the objects have the same charge.
<h3>
What is conduction?</h3>
The term conduction has to do with the manner of charging in which charge is passed from one object to another. Induction involves charging objects without the objects touching each other.
The region marked X in the diagram shows that the objects have the same charge.
Learn ore about conduction:brainly.com/question/15306642
#SPJ1
As altitude increases, temperature increases.
The stratosphere is the part of the atmosphere that starts in the tropopause and ends in the estratopause. In the troposphere, the air is close to the Earth surface. The air surface can absorb more sunlight energy than the air, so the Earth surface heats the air. As you go higher, the distance to the Earth surface is higher, so the temperature is lower. The troposphere ends in the tropopause, where this trend changes. In the estratopause, there is a lot of ozone, which absorbs the dangerous UV radiation and converts into heat. That heat warms the air. So the air which is close to the estratopause is warm because of the heat released by the ozone reactions. The tropopause is far from the Earth surface and far from the ozone layer, that’s why it is cold. So the tropopause is cold and the estratopause is warm, which means: the air becomes warmer <span>as you rise above the tropopause until you get to the estratopause.</span>
In order to solve the problem, it is necessary to apply the concepts related to the conservation of momentum, especially when there is an impact or the throwing of an object.
The equation that defines the linear moment is given by

where,
m=Total mass
Mass of Object
Velocity before throwing
Final Velocity
Velocity of Object
Our values are:

Solving to find the final speed, after throwing the object we have

We have three objects. For each object a launch is made so the final mass (denominator) will begin to be subtracted successively. In addition, during each new launch the initial speed will be given for each object thrown again.
That way during each section the equations should be modified depending on the previous one, let's start:
A) 



B) 



C) 



Therefore the final velocity of astronaut is 3.63m/s
Answer:
B) Within an atom, an electron can have only particular energies.
Explanation:
As we know that electrons have energy but apart from electrons we know that protons and neutrons inside the nucleus of atom will also have energy in them.
rest all the statements are true as we have
A) Electrons orbit the nucleus rather like planets orbiting the Sun.
TRUE, because electrons can move in stationary orbit around the nucleus
C) Electrons can jump between energy levels in an atom only if they receive or give up an amount of energy equal to the difference in energy between the energy levels.
Difference amount of energy is lost or absorbed by the electron in form of photons
D) An electron has a negative electrical charge.
Charge of an electron is given as 
E) Electrons have very little mass compared to protons or neutrons
Mass of an electron is given as

mass of proton or neutron
