Answer:
A (2066,6 N)
Explanation:
Use the Work formula
62.000J = F . 30
62.000/30 = 2066,6 N
The amout of time it took to move the rock doesn´t matter at all.
It is called a distraction variable, We don´t need it to solve the problem it is there just to confuse.
1 astronomical unit = 149597870700m
Enrico should divide distance in meters with this number.
<h2>Answers:</h2><h2 /><h2>a) Arrow B</h2><h2>b) Arrow E</h2>
Explanation:
Refraction is a phenomenon in which a wave (the light in this case) bends or changes its direction <u>when passing through a medium with a refractive index different from the other medium.</u> Where the Refractive index is a number that describes how fast light propagates through a medium or material.
According to this, if we observe the rays A an D passing throgh the biconcave lens, we will have two mediums:
1) The air
2)The material of the biconcave lens
This two mediums have different refractive indexes, hence the rays will change the direction.
-For the incident ray A, the corresponding refractive ray is B, because is the ray that bends after passing throgh the lens
-For the incident ray D, the refracted ray is E following the same principle.
Answer:
98.13m
Explanation:
Complete question
Daniel is 50.0 meters away from a building. Tip of the building makes an angle of 63.0° with the horizontal. What is the height of the building
CHECK THE ATTACHMENT
From the figure, using trigonometry
Tan(θ ) = opposite/adjacent
Where Angle (θ )= 63°
Opposite= X = height of the building
Adjacent= 50 m
Then substitute the values we have
Tan(63)= X/50
1.9626= X/50
X= 1.9626 × 50
X= 98.13m
Hence, the height of the building is 98.13m
The vertical component is = vsinx m/s
If you know the angle, substitute the value of x.
If you know the velocity at which it is moving, substitute it for v
Hope it helps :)