Answer:
(C)
Explanation:
Volume is independent of the mass. Volume depends on the spatial dimensions so no matter how much you change the mass, volume will remain the same.
As it is pushed deeper, the buoyant force on the jar will decrease. The correct option is B
<h3>What is buoyant force ?</h3>
The upward force applied to an object that is fully or partially submerged in a fluid is known as the buoyant force. Upthrust is another name for this upward thrust. A body submerged partially or completely in a fluid appears to shed weight, or to be lighter, due to the buoyant force.
The fluid under which an object is submerged exerts pressure, which is what generates the buoyancy force. Because a fluid's pressure rises with depth, the buoyancy force is always upward.
To know more about buoyant force you may visit the link:
brainly.com/question/21990136
#SPJ4
Answer:
6957.04N
Explanation:
Using
vf2=vi2+2ad
But vf = 0 .
So convert 50km/hr to m/s, and you need to convert 61 cmto m
(50km/hr)*(1hr/3600s)*(1000m/km) = 13.9m/s
61cm * (1m/100cm) = .61m
So n
0 = (13.9m/s)^2 + 2a(.61m)
a = 158.11m/s^2
So
using F = ma
F = 44kg(158.11m/s^2) = 6957.04N
Answer:
7.328m/s
Explanation:
Given parameters:
height of table = 0.68m
final velocity of the ball = 6m/s
Unknown:
Initial velocity of ball = ?
Solution:
To solve this problem, we are going to employ the appropriate motion equation.
We must understand that this fall occurs in the presence of gravity;
V = U + 2gH
Where;
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
H is the height of the pool table
Since U is the unknown, let us make it the subject of the expression;
U = V - 2gH
U = 6 - (2 x 9.8 x 0.68) = 7.328m/s(deceleration)
and closing
.
The heart has 4 valves. They are what makes the lub-dub lub-dub sounds that can be heard from the chest.
The mitral valve is located between the left atrium and the left ventricle. It closes the left atrium to collect oxygenated blood from the lungs and opens to pass it on to the left ventricle.
The tricuspid valve is located between the right atrium and the right ventricle. It closes the right atrium to hold unoxygenated blood and opens to pass it on to the right ventricle ensuring a one way flow.
The aortic valve is located between the aorta and the left ventricle. It closes the left ventricle and opens to the aorta to pass on the oxygen-rich blood to the body.
The pulmonary valve is located between the pulmonary artery and the right ventricle. It closes off the right ventricle and opens to pass on unoxygenated blood to the lungs.