1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igor_vitrenko [27]
2 years ago
13

Mention one life application on density ​

Physics
1 answer:
kow [346]2 years ago
5 0

One well-known application of density is determining whether or not an object will float on water. If the object's density is less than the density of water, it will float; if its density is less than that of water, it will sink.In fact, submarines dive below the surface of the water by emptying their ballast tanks

You might be interested in
I don’t know how to answer this question? Can anyone help?
VMariaS [17]

Answer:

F=ma

here F is force, m is mass and a is accelaration,

According to the question,

F=3*F= 3F

m= 1/3 of m= m/3

a= ?

so the equation becomes,

3F= m/3*a

3F*3= ma

9F=ma

F= ma/9

Therefore accelaration reduces by 1/9.

I am not very sure.

7 0
3 years ago
A 23.5 g piece of aluminum metal is initially at 100.0°C. It is dropped into a coffee cup-calorimeter containing 130.0 g of wate
vivado [14]

Answer: The molar heat capacity of aluminum is 25.3J/mol^0C

Explanation:

heat_{absorbed}=heat_{released}

As we know that,  

Q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})

m_1\times c_1\times (T_{final}-T_1)=-[m_2\times c_2\times (T_{final}-T_2)]         .................(1)

where,

q = heat absorbed or released

m_1 = mass of water = 130.0 g

m_2 = mass of aluminiunm = 23.5 g

T_{final} = final temperature = 26.0^oC=(273+26)K=299K

T_1 = temperature of water = 23^oC=(273+23)K=296K

T_2 = temperature of aluminium = 100^oC=273+100=373K

c_1 = specific heat of water= 4.184J/g^0C

c_2 = specific heat of aluminium= ?

Now put all the given values in equation (1), we get

130.0\times 4.184\times (299-296)=-[23.5\times c_2\times (299-373)]

c_2=0.938J/g^0C

Molar mass of Aluminium = 27 g/mol

Thus molar heat capacity =0.938J/g^0C\times 27g/mol=25.3J/mol^0C

5 0
3 years ago
Air, considered an ideal gas, is contained in an insulated piston-cylinder assembly outfitted with a paddle wheel. It is initial
Maru [420]

Our data are,

State 1:

P_1= 10psi=68.95kPa\\V_1 = 1ft^3=0.02831m^3\\T_1 = 100\°F = 310.93K

State 2:

P_2 =5psi=34.474kPa\\V_2 = 3ft^3=0.0899m^3

We know as well that 3BTU=3.16kJ/K

To find the mass we apply the ideal gas formula, which is given by

P_1V_1=mRT_1

Re-arrange for m,

m= \frac{P_1V_1}{RT_1}\\m= \frac{68.95*0.02831}{(0.287)310.9}\\m=0.021893kg=0.04806lbm\\

Because of the pressure, temperature and volume ratio of state 1 and 2, we have to

\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}

Replacing,

T_2 = \frac{P_2V_2}{P_1V_1}T_1\\T_2 =\frac{34.474*0.0844}{68.95*0.02831}*310.93\\T_2 = 464.217K=375.5\°F

For conservative energy we have, (Cv = 0.718)

W = m C_v = 0.718  \Delta T +dw\\dw = W - mv\Delta T\\dw = 3.16-(0.0218*0.718)(454.127-310.93)\\dw = 0.765kJ=0.72BTU

3 0
3 years ago
Suppose that a charged particle of diameter 1.00 micrometer moves with constant speed in an electric field of magnitude 1.00×105
Dovator [93]
It's a bit of a trick question, had the same one on my homework. You're given an electric field strength (1*10^5 N/C for mine), a drag force (7.25*10^-11 N) and the critical info is that it's moving with constant velocity(the particle is in equilibrium/not accelerating). 
<span>All you need is F=(K*Q1*Q2)/r^2 </span>
<span>Just set F=the drag force and the electric field strength is (K*Q2)/r^2, plugging those values in gives you </span>
<span>(7.25*10^-11 N) = (1*10^5 N/C)*Q1 ---> Q1 = 7.25*10^-16 C </span>
3 0
3 years ago
Read 2 more answers
Consider an electron with charge −e and mass m orbiting in a circle around a hydrogen nucleus (a single proton) with charge +e.
alexandr1967 [171]

Answer:

v=\sqrt{k\frac{e^2}{m_e r}}, 2.18\cdot 10^6 m/s

Explanation:

The magnitude of the electromagnetic force between the electron and the proton in the nucleus is equal to the centripetal force:

k\frac{(e)(e)}{r^2}=m_e \frac{v^2}{r}

where

k is the Coulomb constant

e is the magnitude of the charge of the electron

e is the magnitude of the charge of the proton in the nucleus

r is the distance between the electron and the nucleus

v is the speed of the electron

m_e is the mass of the electron

Solving for v, we find

v=\sqrt{k\frac{e^2}{m_e r}}

Inside an atom of hydrogen, the distance between the electron and the nucleus is approximately

r=5.3\cdot 10^{-11}m

while the electron mass is

m_e = 9.11\cdot 10^{-31}kg

and the charge is

e=1.6\cdot 10^{-19} C

Substituting into the formula, we find

v=\sqrt{(9\cdot 10^9 m/s) \frac{(1.6\cdot 10^{-19} C)^2}{(9.11\cdot 10^{-31} kg)(5.3\cdot 10^{-11} m)}}=2.18\cdot 10^6 m/s

7 0
4 years ago
Other questions:
  • Elements with high atomic numbers tend to have____.
    8·1 answer
  • In terms of saturation (unsaturated, saturated, super-saturated). How would you classify the following?
    9·1 answer
  • Would the light turn on? Why or why not
    8·2 answers
  • Two point charges, with charge magnitudes q and ????, are placed a distance r apart. In this arrangement, each point charge expe
    6·1 answer
  • A horizontal force of 350N is exerted on a 2.5 kg ball as it rotates uniformly in a horizontal circle of radius of 0.90m. Calcul
    6·1 answer
  • A steel ball rolls with constant velocity on a tabletop 1.95 m high. It rolls off and hits the ground 0.5 m away from the edge o
    8·1 answer
  • An insulated container with a divider in the middle contains two separated gases. Gas 1 is initially at a higher temperature tha
    15·2 answers
  • What are the two types of opportunity cost? Select two.
    14·1 answer
  • Which water would you use to make salt dissolve the slowest?
    15·1 answer
  • 7. A 78-kg skydiver has a speed of 62 m/s at an altitude of 870 m above the ground.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!