Answer:
In one rotation, the large wheel turns 4m.
Explanation:
The given values are:
Input distance,
= 0.64 m
Mechanical advantage,
= 0.16
As we know,
⇒ 
On putting the values, we get
⇒ 
⇒
Answer:

Explanation:
The vector that point from point P1 to point P2 its found simply by taking the vector at which point P2 its located and subtracting the vector at which point P1 its located:

So:



For this case, let's
assume that the pot spends exactly half of its time going up, and half going
down, i.e. it is visible upward for 0.245 s and downward for 0.245 s. Let us take
the bottom of the window to be zero on a vertical axis pointing upward. All calculations
will be made in reference to this coordinate system. <span>
An initial condition has been supplied by the problem:
s=1.80m when t=0.245s
<span>This means that it takes the pot 0.245 seconds to travel
upward 1.8m. Knowing that the gravitational acceleration acts downward
constantly at 9.81m/s^2, and based on this information we can use the formula:
s=(v)(t)+(1/2)(a)(t^2)
to solve for v, the initial velocity of the pot as it enters
the cat's view through the window. Substituting and solving (note that
gravitational acceleration is negative since this is opposite our coordinate
orientation):
(1.8m)=(v)(0.245s)+(1/2)(-9.81m/s^2)(0.245s)^2
v=8.549m/s
<span>Now we know the initial velocity of the pot right when it
enters the view of the window. We know that at the apex of its flight, the
pot's velocity will be v=0, and using this piece of information we can use the
kinematic equation:
(v final)=(v initial)+(a)(t)
to solve for the time it will take for the pot to reach the
apex of its flight. Because (v final)=0, this equation will look like
0=(v)+(a)(t)
Substituting and solving for t:
0=(8.549m/s)+(-9.81m/s^2)(t)
t=0.8714s
<span>Using this information and the kinematic equation we can find
the total height of the pot’s flight:
s=(v)(t)+(1/2)(a)(t^2) </span></span></span></span>
s=8.549m/s (0.8714s)-0.5(9.81m/s^2)(0.8714s)^2
s=3.725m<span>
This distance is measured from the bottom of the window, and
so we will need to subtract 1.80m from it to find the distance from the top of
the window:
3.725m – 1.8m=1.925m</span>
Answer:
<span>1.925m</span>
Nitrogen is the most abundant of the gases present in the atmosphere. 78 percent of the atmospheric air comprises of nitrogen, oxygen makes up for 21 percent and all other gases make up for the remaining one percent. Oxygen is a highly flammable gas and in the absence of nitrogen it would not have been possible to utilize this atmospheric oxygen, hence the presence of nitrogen reduces its flammability and also neutralizes the toxicity of other gases.
Answer:
18.4615385 amps
Explanation:
The voltage V in volts (V) is equal to the current I in amps (A) times the resistance R in ohms (Ω):