Jumping on a trampoline is a classic example of conservation of energy, from potential into kinetic. It also shows Hooke's laws and the spring constant. Furthermore, it verifies and illustrates each of Newton's three laws of motion.
<u>Explanation</u>
When we jump on a trampoline, our body has kinetic energy that changes over time. Our kinetic energy is greatest, just before we hit the trampoline on the way down and when you leave the trampoline surface on the way up. Our kinetic energy is 0 when you reach the height of your jump and begin to descend and when are on the trampoline, about to propel upwards.
Potential energy changes along with kinetic energy. At any time, your total energy is equal to your potential energy plus your kinetic energy. As we go up, the kinetic energy converts into potential energy.
Hooke's law is another form of potential energy. Just as the trampoline is about to propel us up, your kinetic energy is 0 but your potential energy is maximized, even though we are at a minimum height. This is because our potential energy is related to the spring constant and Hooke's Law.
Answer:
<h2>23.33 kg </h2>
Explanation:
The mass of the object can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>23.33 kg</h3>
Hope this helps you
Wavelength = velocity/frequency
wavelength = v/f
v= 13km/s = change this to m/s = 13000m/s
f= 14Hz
wavelength = 13000m/s÷14Hz =928.7 m
Particles that are closely packed but spaced apart enough to move over one another are called plasma. Option C is correct.
<h3>What is the plasma state of matter?</h3>
Plasma is a state of matter wherein particles are tightly packed but are far enough apart to slide over one another.
The following conditions are followed by the plasma state.
Hence, option C is correct.
To learn more about the plasma state refer;
brainly.com/question/5496865
#SPJ1