1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kakasveta [241]
4 years ago
14

Explain what kind of heat transfer occurs when you burn yourself on a hot car seat in the summer.

Physics
1 answer:
liubo4ka [24]4 years ago
6 0
Conduction is a mode of transfer of heat there
You might be interested in
A 60-W, 120-V light bulb and a 200-W, 120-V light bulb are connected in series across a 240-V line. Assume that the resistance o
gulaghasi [49]

A. 0.77 A

Using the relationship:

P=\frac{V^2}{R}

where P is the power, V is the voltage, and R the resistance, we can find the resistance of each bulb.

For the first light bulb, P = 60 W and V = 120 V, so the resistance is

R_1=\frac{V^2}{P}=\frac{(120 V)^2}{60 W}=240 \Omega

For the second light bulb, P = 200 W and V = 120 V, so the resistance is

R_1=\frac{V^2}{P}=\frac{(120 V)^2}{200 W}=72 \Omega

The two light bulbs are connected in series, so their equivalent resistance is

R=R_1 + R_2 = 240 \Omega + 72 \Omega =312 \Omega

The two light bulbs are connected to a voltage of

V  = 240 V

So we can find the current through the two bulbs by using Ohm's law:

I=\frac{V}{R}=\frac{240 V}{312 \Omega}=0.77 A

B. 142.3 W

The power dissipated in the first bulb is given by:

P_1=I^2 R_1

where

I = 0.77 A is the current

R_1 = 240 \Omega is the resistance of the bulb

Substituting numbers, we get

P_1 = (0.77 A)^2 (240 \Omega)=142.3 W

C. 42.7 W

The power dissipated in the second bulb is given by:

P_2=I^2 R_2

where

I = 0.77 A is the current

R_2 = 72 \Omega is the resistance of the bulb

Substituting numbers, we get

P_2 = (0.77 A)^2 (72 \Omega)=42.7 W

D. The 60-W bulb burns out very quickly

The power dissipated by the resistance of each light bulb is equal to:

P=\frac{E}{t}

where

E is the amount of energy dissipated

t is the time interval

From part B and C we see that the 60 W bulb dissipates more power (142.3 W) than the 200-W bulb (42.7 W). This means that the first bulb dissipates energy faster than the second bulb, so it also burns out faster.

7 0
3 years ago
LAST ONE! ASAP PLEASE
Doss [256]

Answer:

There are so many questions which one you don't know

4 0
3 years ago
Read 2 more answers
Anyone wanna join whereby?<br><br> https://whereby.com/dancing-goddess
AleksandrR [38]
Sure let me download it rn
6 0
3 years ago
You launch a ball at an angle of 35 degrees above the horizontal with an initial velocity of 38 m/s. What is the time the ball w
gayaneshka [121]

Vf=Vi+at

0=38+(-9.8)(?)

?=38-0+(-9.8)

?=28.2 s

5 0
3 years ago
The presence of which phenomenon proved the predictability of the big bang theory?
Law Incorporation [45]
The measurement of the expansion of the universe was what gave rise to the big bang theory and it's predictions. 
7 0
3 years ago
Read 2 more answers
Other questions:
  • Why are the spheres representing nitrogen and oxygen different colors
    8·1 answer
  • What is the approximate diameter of an inflated
    14·1 answer
  • In a generator the current changes direction each time the passes through the of a d
    6·2 answers
  • Do you divide mass by volume to get density
    12·1 answer
  • How does the latent heat of fusion of water help slow the decrease in air temperature,perhaps preventing temperatures from falli
    5·1 answer
  • A 2.0 kg pendulum has an initial total energy of 20 J. Calculate the energy lost as heat if the pendulum is 0.10 m high and is t
    11·1 answer
  • HELPPPPP ASAP WILL GIVE brainly to correct answer
    6·2 answers
  • You are sitting on the beach and notice that a seagull floating on the water moves up and down 5 times in I minute. What is the
    12·1 answer
  • what are the four things that affect the resistance of a wire? A. length, diameter, material, and temperature B. weight, diamete
    14·1 answer
  • If the tension in the rope is 160 n, how much work does the rope do on the skier during a forward displacement of 270 m?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!