Answer:
Energy cannot be changed from one form to another without a loss of usable energy
Explanation:
Second law of thermodynamics states that the total entropy or the randomness of the system remains constant over time. It also states that the net entropy will remain the same or it will increase.
Entropy of a system is given by heat absorbed divided by temperature. It is given by :

So, the correct option is (A) "Energy cannot be changed from one form to another without a loss of usable energy".
Counter clockwise torque is 360Nm.
Clockwise torque is 240Nm.
40 * 9 = 360
80 * 3 = 240
The answer for APEX Learning is Ocean
(a) The equation for the work done in stretching the spring from x1 to x2 is ¹/₂K₂Δx².
(b) The work done, in stretching the spring from x1 to x2 is 11.25 J.
(c) The work, necessary to stretch the spring from x = 0 to x3 is 64.28 J.
<h3>
Work done in the spring</h3>
The work done in stretching the spring is calculated as follows;
W = ¹/₂kx²
W(1 to 2) = ¹/₂K₂Δx²
W(1 to 2) = ¹/₂(250)(0.65 - 0.35)²
W(1 to 2) = 11.25 J
W(0 to 3) = ¹/₂k₁x₁² + ¹/₂k₂x₂² + ¹/₂F₃x₃
W(0 to 3) = ¹/₂(660)(0.35)² + ¹/₂(250)(0.65 - 0.35)² + ¹/₂(105)(0.89 - 0.65)
W(0 to 3) = 64.28 J
Learn more about work done here: brainly.com/question/25573309
#SPJ1
The minimum stopping distance when the car is moving at 32.0 m/s is 348.3 m.
<h3>
Acceleration of the car </h3>
The acceleration of the car before stopping at the given distance is calculated as follows;
v² = u² + 2as
when the car stops, v = 0
0 = u² + 2as
0 = 15² + 2(76.5)a
0 = 225 + 153a
-a = 225/153
a = - 1.47 m/s²
<h3>Distance traveled when the speed is 32 m/s</h3>
If the same force is applied, then acceleration is constant.
v² = u² + 2as
0 = 32² + 2(-1.47)s
2.94s = 1024
s = 348.3 m
Learn more about distance here: brainly.com/question/4931057
#SPJ1