Answer:
i) Telescopes can be used to view far distant objects but the human eye can't view far distant objects.
ii) Telescopes uses two convex lenses producing a magnified image while the human eye only possesses one convex lens (image seen are smaller than that viewed under telescopes)
Explanation:
The telescopes can be used to view far distant objects due to their presence of two convex lenses. The two convex lenses are the objective lens (lens closer to object) and the eye piece lens (lens closer to eye). The object to be viewed forms an intermediate image first before the final image is seen using the eye piece lens.
The human eye only possess one convex lens and as such cannot view far ranged objects.
Answer:
47.8rad/s
Explanation:
For energy to be conserved.
The potential energy sustain by the object would be equal to K.E
P.E = m× g× h = 2 × 9.81× 3.5= 68.67J
Now K.E = 1/2 × I × (w1^2 - w0^2)
I = 2/3 × M × R2
= 2/3 × 2 × (0.23)^2= 0.0705
Hence
W1 = final angular velocity
Wo = initial angular velocity
From P.E = K.E we have;
68.67J = 1/2 × 0.0705 × (w1^2 - w0^2)
(w1^2 - w0^2) = 1948.09
W1^2 = 1948.09 + (18.3^2)
W1^2=2282.98
W1 = √2282.98
=47.78rad/s
= 47.8rad/s to 1 decimal place.
All except C, feelings are not physical.
Answer:
+5.7 m/s
Explanation:
According to the law of conservation of momentum is that the momentum before the collision is equal to the momentum after the collision. In an equation form it would look like this:
M₁V₁+M₂V₂ = M₁V₁'+M₂V₂'
Where:
M₁ = mass of object 1 (kg)
V₁ = velocity of object 1 before the collision (m/s)
V₁' = Final velocity of object 1 after the collision (m/s)
M₂ = mass of object 2 (kg)
V₂ = velocity of object 2 before the collision (m/s)
V₂' = Final velocity of object 2 after the collision (m/s)
According to your problem you have the following given:
M₁ = 5 g = 0.005kg
V₁ = 3 m/s
V₁' = -5m/s (It bounced off so it is going the other direction)
M₂ = 6g = 0.006kg
V₂ = -1 m/s (It is coming from the opposite direction of the 3-ball)
V₂' = ?
So we plug in what we know and solve for what we don't know.

-- Bathroom tiles are usually cool, so water condenses on them
when you take a hot bath or shower in the room.
-- The natural result is that a smooth tile would become slippery,
exactly when you're walking around with wet feet and nothing on them ...
a dangerous situation.
-- In order to circumvent this safety hazard, the tiles in the bathroom
should be rough, especially on the floor.