Answer:
Explanation:
On both sides of the film , the mediums have lower refractive index.
for interfering pattern from above , for constructive interference of reflected wave from both sides of the film , the condition is
2μt = ( 2n +1 ) λ / 2
μ is refractive index of film ,t is thickness of film λ is wavelength of light
n is order of fringe
for minimum thickness
n = 0
2μt = λ / 2
t = λ / 4μ
= 670 / 1.75 x 4
= 95.71 nm .
Answer:
Cp= 0.44 J/g.C
This is heat capacity of metal.
Explanation:
From energy conservation
Heat lost by metal = Heat gain by water +Heat gain by calorimeter
Because here temperature of metal is high that is why it loose the heat.The temperature of water and calorimeter is low that is why they gain the heat.
final temperature is T= 30.5 C
We know that sensible heat transfer given as
Q= m Cp ΔT
m=Mass
Cp=Specific heat capacity
ΔT=Temperature difference
By putting the values
55 x Cp ( 99.5 - 30.5) = 40 x 4.184 ( 30.5- 21 ) + 10 x ( 30.5 - 21)
Cp ( 99 .5- 30.5) = 30.65
Cp= 0.44 J/g.C
This is heat capacity of metal.
Answer:

Explanation:
To develop this exercise we proceed to use the kinetic energy equations,
In the end we replace


Here
meaning the 4 wheels,
So replacing

So,




Answer:
The answer is B.
Explanation:
If 212 degrees Fahrenheit is 100 degrees Celsius, then 32 degrees Fahrenheit is 0 degrees Celsius.